ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

на диссертацию Подопросветовой Анастасии Борисовны «Теоретическое и экспериментальное исследования устойчивости упругой трубки с протекающей внутри жидкостью», представленную на соискание ученой степени кандидата физико-математических наук по специальности 01.02.05 – «Механика жидкости, газа и плазмы»

Актуальность работы. Диссертация А. Б. Подопросветовой посвящена решению классической задачи гидроупругости применительно к устойчивости тонкостенной упругой трубки с протекающей внутри жидкостью. Такого рода объекты широко распространены как в живой природе, так и в технических приложениях, а потеря статической или динамической устойчивости трубки может приводить к серьезным нарушениям в работе системы, что обуславливает неослабевающий интерес исследователей к данной проблеме. При этом, несмотря на большое количество исследований, остаются практически неизученными многие аспекты проблемы, среди которых, в частности, влияние реологии текущей жидкости на устойчивость трубки. С учетом сказанного, не вызывает сомнения актуальность диссертации А. Б. Подопросветовой, большая часть которой посвящена анализу устойчивости упругой трубки при протекании по ней псевдопластической (степенной) жидкости.

Структура работы. Диссертация состоит из введения, четырех глав и заключения. Общий объем диссертации составляет 136 страниц, включая 57 рисунков и список литературы из 130 наименований.

<u>Во введении</u> обосновывается актуальность диссертационной работы, формулируются ее цели и задачи, а также основные новые научные результаты работы и положения, выносимые на защиту. Приводится внушительный список российских и международных конференций, на которых были представлены результаты работы, перечислены публикации по теме диссертации с указанием личного вклада автора.

В первой главе диссертации в разделе 1.1 приведен обстоятельный обзор современного состояния теоретических и экспериментальных исследований

устойчивости упругих трубок с протекающей внутри жидкостью. В разделе 1.2 получены одномерные уравнения динамики длинной трубки с протекающей по ней степенной жидкостью для случая осесимметричных длинноволновых возмущений в предположении установившегося квазистационарного течения.

Во второй главе рассмотрены вопросы существования и единственности стационарных решений полученной в разд.1.2 системы одномерных уравнений динамики трубки; исследование базируется на анализе возможных фазовых траекторий с учетом положения стационарных точек на фазовой плоскости задачи. В разделе 2.2 исследовано влияние продольного натяжения трубки и избыточного внутреннего (трансмурального) давления без учета трения на стенках; показано, что стационарное решение задачи существует не при любых значениях определяющих параметров (в частности, могут накладываться ограничения на длину упругой части трубки), причем это решение в общем случае неединственное. В разделе 2.3 продемонстрировано влияние потерь на трение; показано, что при больших значениях числа Рейнольдса стационарное решение также существует не при любой длине трубки и может быть неединственным.

<u>В третьей</u>, самой большой главе диссертации, проведен теоретический анализ устойчивости стационарных решений системы, полученной в разд.1.2.

В разделе 3.1 выполнена линеаризация исходной системы и получено дисперсионное уравнение для длинноволновых возмущений в предположении, что на длине волны невозмущенный радиус трубки почти постоянен. Получен критерий локальной неустойчивости и определена область существования устойчивых решений. Показано, в частности, что неустойчивость (нарастание амплитуды возмущений) возможна только для жидкостей с показателем степени n < 0.611, причем положение границы устойчивости не зависит от числа Рейнольдса, которое влияет лишь на скоростью роста возмущений. В разделе 3.2 определена граница области абсолютной неустойчивости; исследовано влияние на нее числа Рейнольдса и продольного натяжения трубки. В разделе 3.4 исследована глобальная неустойчивость трубки большой, но конечной длины; установлено, что в таком случае неустойчивость возможна лишь при показателе степени в реологическом законе n < 1/3.

В разделе 3.3 проведен анализ влияния слабого сужения или расширения упругой трубки на локальную устойчивость. Раздел 3.5 посвящен изучению глобальной неустойчивости такой трубки большой, но конечной длины; найден критерий неустойчивости в зависимости от «скорости» сужения/расширения трубки и числа Рейнольдса. Показано, что для сужающейся трубки область неустойчивости существенно меньше, чем для расширяющейся, причем при уменьшении числа Рейнольдса область неустойчивости для сужающихся трубок растет, а для расширяющихся – уменьшается.

Раздел 3.6 посвящен исследованию устойчивости трубки конечной длины с жесткими цилиндрическими участками на входе и выходе. Проанализировано влияние различных параметров задачи на область неустойчивости. Показано, в частности, что увеличение длины упругой части трубки, уменьшение длины жестких участков и уменьшение продольного натяжения трубки являются дестабилизирующими факторами, тогда как изменение числа Рейнольдса и поверхностной плотности трубки практически не влияет на устойчивость.

В четвертой главе представлены результаты экспериментального исследования устойчивости упругой тонкостенной трубки, натянутой между двумя жёсткими трубками того же диаметра, с протекающей внутри ньютоновской жидкостью. Основной акцент сделан на оценку влияния режима течения жидкости (ламинарный или турбулентный) на устойчивость трубки при одинаковых значениях расхода и перепада давления. В ходе исследования обнаружены четыре режима автоколебаний, которые последовательно сменяют друг друга при изменении перепада давления.

В заключении сформулированы основные результаты и выводы по работе.

Достоверность полученных в диссертации результатов обусловлена применением известных математических методов анализа устойчивости решений дифференциальных уравнений, использованием современного измерительного оборудования в сочетании с должной методической проработкой экспериментальной части исследования, качественным согласием полученных результатов с имеющимися данными по устойчивости упругих трубок с протекающей внутри жидкостью.

Новизна результатов также не вызывает сомнений, поскольку вопросы влияния режима течения и реологии жидкости на устойчивость упругих трубок до настоящего времени практически не исследовались.

Замечания по работе:

- 1. При выводе основной системы одномерных уравнений динамики упругой трубки (разд. 1.2) автор не дает никаких количественных оценок условий применимости вводимых допущений. В частности, неясно:
 - 1a) насколько плавным и медленным должно быть изменение радиуса трубки, чтобы пренебречь его влиянием на распределение скорости потока и считать течение локально равновесным (Пуазейлевским);
 - 1б) насколько толстыми должны быть стенки трубки, чтобы допущение об осевой симметрии было физически оправданным при деформации сжатия.
- 2. При анализе стационарных решений уравнения динамики упругой трубки (гл. 2) в числе прочих рассматриваются варианты, для которых заведомо нарушается исходное допущение о Пуазейлевском распределении скорости жидкости. В частности:
 - 2а) в разд. 2.2.2 большое внимание уделено анализу решения с граничным условием $dR/dz \rightarrow \infty$, хотя исходно предполагалось, что |dR/dz| <<1;
 - 2б) в разд. 2.4 (рис. 2.16 2.18) показаны примеры, в которых радиус исходно цилиндрической трубки изменяется на порядок (!) на расстоянии менее одного диаметра.
- 3. При анализе устойчивости трубки (гл. 3) следовало бы обосновать правомочность пренебрежения поверхностной массой трубки (m = 0). Ведь помимо массы собственно стенки трубки, параметр m должен включать т.наз. присоединенную массу, которая учитывает инерцию жидкости при радиальной деформации трубки и, в общем случае, не может считаться сколь угодно малой.
- 4. Условия проведения экспериментов по исследованию устойчивости упругой трубки (гл. 4) описаны недостаточно полно и объективно, что затрудняет адекватную оценку полученных результатов. В частности:

- 4а) При обсуждении рис. 4.3а не сказано, при каких значениях выходного давления p_2 проводились измерения. Быть может наблюдавшееся существенное увеличение коэффициента сопротивления трубки при уменьшении Re обусловлено уменьшением сечения трубки из-за снижения трансмурального давления?
- 4б) В разд.4.2.2 на стр.104 читаем: «при фиксированном расходе давление вверх по течению p_1 остается неизменным, а выходное давление p_2 изменяется в зависимости от положения выходного отверстия сливного шланга», тогда как в начале той же страницы сказано прямо противоположное при постоянном трансмуральном давлении $p_2 p_e$ меняется перепад давления $\Delta p = p_1 p_2$ (и, соответственно, входное давление p_1). Подтверждено ли хоть одно из этих утверждений данными измерений? На первый взгляд кажется, что должны были меняться оба давления!
- 4в) Из данных рис. 4.10 можно заключить, что выбранные в разд. 4.1.3 параметры не обеспечили полной «эквивалентности» ламинарного и турбулентного потоков: небольшое (на пределе точности измерений), но все же систематическое отличие перепадов давления $p_1 p_2$ имеет место. Однако отсутствие данных о величине выходного давления p_2 не позволяет оценить, не послужила ли эта погрешность в обеспечении «эквивалентности» потоков одной из причин обнаруженного отличия границ устойчивости трубки при ламинарном и турбулентном режимах течения жидкости.

Высказанные замечания, которые относятся, главным образом, к представлению материала на страницах диссертации, не снижают безусловно положительного впечатления от работы в целом и ни в коей мере не ставят под сомнение достоверность, обоснованность и новизну представленных в диссертации результатов и основанных на них выводов и рекомендаций. Диссертация является законченной научно-квалификационной работой, которая выполнена на высоком уровне и содержит решение ряда научных задач гидроупругости, имеющих значение для развития механики жидкости, газа и плазмы. Основные результаты

диссертации опубликованы в трех изданиях, рекомендованных ВАК и/или индексируемых в Web of Science или Scopus. Материалы исследования докладывались на многочисленных конференциях и семинарах внутри страны и за рубежом. Автореферат диссертации достаточно полно отражает ее содержание и основные результаты.

Исходя из сказанного, считаю, что рецензируемая работа соответствует специальности 01.02.05 — «Механика жидкости, газа и плазмы» и удовлетворяет требованиям «Положения о порядке присуждения учёных степеней», предъявляемым к диссертациям на соискание учёной степени кандидата наук, а ее автор, Анастасия Борисовна Подопросветова, заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 01.02.05 — «Механика жидкости, газа и плазмы».

Официальный оппонент

д. ф-м. н.

Д. К. Зайцев

20.01.2021

Зайцев Дмитрий Кириллович, доктор физико-математических наук, доцент, профессор Высшей школы прикладной математики и вычислительной физики ФГАОУ ВО «Санкт-Петербургский политехни вский университет Петра Великого»

Россия, 195251, г. Санкт-Петербург, Политехническая уд. 29

т. 8-812-2972419, zaitsev dk@spbstu.ru, http://aero.spbstu.ru,

УДОСТОВЕРЯК Ведущий специалист

allo 01 2021