
Future Generation Computer Systems 21 (2005) 743–748

Development of efficient computational kernels and linear
algebra routines for out-of-order superscalar processors

O. Bessonova,∗, D. Foug̀ereb, B. Rouxb

a Institute for Problems in Mechanics of the Russian Academy of Sciences, 101, Vernadsky ave., 119526 Moscow, Russia
b Laboratoire de Mod´elisation et Simulation Num´erique en Mécanique (L3M), L3M–IMT, La Jet´ee, Technopˆole

de Château-Gombert, 13451 Marseille Cedex 20, France

Available online 25 June 2004

Abstract

We present methods for developing high performance computational kernels and dense linear algebra routines. The microarchi-
tecture of AMD processors is analyzed with the goal to achieve peak computational rates. Approaches for implementing matrix
multiplication algorithms are suggested for hierarchical memory computers. Block versions of matrix multiplication and LU-
decomposition algorithms are considered. The obtained performance results for AMD processors are discussed in comparison
with other approaches.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Instruction level parallelism; Out-of-order processor; Cache memory; Performance measurement; LINPACK benchmark

1

o
m
m
i
o
i
a
p
i
i

nal

lgo-
s
ate-
ious
mul-

to
3)
effi-
ty

and
this

el of
C

0
d

. Introduction

Modern computers achieve on typical applications
nly 15–25% of their “theoretical speed” due to
emory limitations. For dense linear algebra[4],
uch higher levels can be reached (50–95%, depend-

ng on CPU or system architecture). Development
f such algorithms can be considered as approach-

ng “the speed of sound” of particular architecture
nd demonstrating its potential. To achieve this
erformance, investigation of a system architecture

s necessary in order to exploit fully the intrinsic
nstruction level parallelism (ILP), with the following

∗ Corresponding author.
E-mail address:bess@ipmnet.ru (O. Bessonov).

development of efficient and robust computatio
algorithms.

The reason of the efficiency of linear algebra a
rithms is that they perform O(n3) arithmetic operation
on O(n2) data elements. Therefore, blocking str
gies with caching can be employed. In the prev
paper[2] we proposed a new approach based on
tiplication of a block-vector by matrix, as opposed
vector–matrix (BLAS 2) and matrix–matrix (BLAS
ones. This approach (BLAS 2.5) combines the
ciency of BLAS 3 with the flexibility and scalabili
of BLAS 2, because it depends less on the shape
size of matrices. Linear equation solvers based on
new algorithm have demonstrated the record lev
LINPACK benchmark[3] performance for some RIS
microprocessors.

167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.future.2004.05.016

744 O. Bessonov et al. / Future Generation Computer Systems 21 (2005) 743–748

The ILP of RISC processors is revealed easily due
to their regular structure with uniform instruction sets,
large number of addressable registers and determinis-
tic execution. This is not true for superscalar CISC pro-
cessors of 86× architecture (Intel Pentium-4 and AMD
Athlon). However, irregularities can be partly compen-
sated by their highly asynchronous microarchitecture,
with deep out-of-order execution and register renam-
ing. To achieve a good performance on CISC proces-
sors, computational cores must be based on long inde-
pendent chains of instructions, rather than on cycle-by-
cycle scheduling (as for RISC).

The goal of this work is to analyze the architecture
of AMD processors and to employ the previous expe-
rience for building efficient computational cores and
linear algebra kernels. We describe the new method
(as applied to AMD processors) and compare it to the
“Cache-contained matrix multiply” approach (ATLAS
Project[6]). Our method demonstrates superiority for
a range of matrix sizes (small to medium). The record
results of LINPACK-1000 benchmark are achieved for
Athlon and Duron CPUs and registered appropriately.
These results are comparable to the performance of
RISC processors.

2. Microarchitecture of processors and
development of computational cores

AMD Athlon/Duron are very fast CISC (Complex
I
c cture
w x-
e
P per
c ack;
l ap-
p tion;
6

per-
f rs
c and
a is
r rate
l

ma-
t is
a ct

Fig. 1. Scalar product form of the matrix multiplication algorithm.

form (Fig. 1) is chosen for AMD processor architec-
ture as the most efficient. To achieve 80–90% of the
peak computational speed (for 64-bit FP arithmetic),
the following method is used:

- multiply a block row in the matrixA by the matrix
B, using the L1 cache as a pool of vector registers (to
keep this block row);

- rely on asynchronous (out-of-order) execution to
hide instruction and memory latencies, since the
static instruction scheduling is not applicable to 87×
stack architecture;

- pack every three instructions into an aligned 8 B bun-
dle for higher decoding rate;

- set the width of a block row inA to 4 or 6 (limited
by the depth of 87× register stack);

- group every four block rows inA (of the width 4 or
6) into a “wide” block row (of the width 16 or 24) to
tolerate the limited memory throughput (Fig. 2);

- employ data prefetch for the next column of the ma-
trix B to hide memory latencies.

A group of four block rows inA is copied prelim-
inarily into a dense work array. Owing to the cache
replacement algorithm, this array becomes effectively
“locked” in the L1 cache after the first iteration. The
typical length of this group (256 for the block width 4)
corresponds to the array size 32 kB, i.e. half of the L1
nstruction Set Computer) processors[1]. They are
haracterized by three-way superscalar archite
ith multiple functional units, deep out-of-order e
cution and register renaming; pipelined 87× Floating
oint Unit that executes up to two 64-bit operations
ycle; eight floating point registers organized as a st
arge physical register files used for renaming (rem
ing) architectural registers in asynchronous execu
4 kB level 1 data cache and 256 kB L2 cache.

Some of these properties may reduce the
ormance (e.g. legacy 86× instruction set), othe
ompensate limitations (e.g. memory prefetch
synchronous execution). Appropriate coding
equired in order to avoid bottlenecks and tole
imitations.

The core of most linear algebra routines is the
rix multiplication algorithm. Different forms of th
lgorithm were investigated in[2]. The scalar produ
 Fig. 2. Grouping block rows in a computational core.

O. Bessonov et al. / Future Generation Computer Systems 21 (2005) 743–748 745

Fig. 3. Basic block in assembler, its FORTRAN notation and the dependency graph.

cache. All other memory accesses are implicitly served
through another half (cache line) of the L1 cache.

The scalar product results are accumulated in the
87× register stack. Four block rows are multiplied in
sequence by the same column of the matrix B with
prefetching the next column inB into the cache. A
basic block of the algorithm (Fig. 3) consists of four
aligned 8 B bundles (12 instructions, 8 FP operations)
and is executed ideally in four clock cycles.

The dependency graph consists of four independent
instruction chains, each∼12 clock cycles long, with
deep overlap due to asynchronous (out-of-order) exe-
cution and register renaming. Execution speed of this
inner loop (with loop control and prefetch instructions)
achieves 90% of the peak computational rate, i.e. 1.8
FP instructions per clock cycle. This corresponds to
the performance 2750 MFLOPS for the processor fre-
quency 1530 MHz.

3. Matrix multiplication and solving linear
systems

Generally, two-level blocking strategy is used for
matrix multiplication algorithms[2]: strip-mining (ver-
tical splitting of the matrixA) to fit a part of a block-
row in A to L1 cache, and tiling (vertical splitting
of the matrix B) to fit a rectangular block to L2
cache.

be-
c er-
a B/s
o on
D be
a and

Fig. 4. Blocking strategy for the matrix multiplication (with strip-
mining).

straightforward (Fig. 4). The width of strips is deter-
mined by the size of the L1 cache and is equal to 256.

For a linear equation solver, the top-looking vari-
ant with partial pivoting and strip-mining is used[5,2]
(Fig. 5). The LU-decomposition algorithm consists of
two basic steps: processing a trapezoidal strip (this is
similar to the multiplication of a “wide” block row in
L1 cache by a matrix strip), and solving a subsystem
within a “wide” block with pivoting.

The first step is performed using the matrix multi-
plication algorithm as above. The second step and the
solution of triangular systems (using the computed fac-
tors U and L) are performed separately. They are not
time-consuming as the first step. Nevertheless, the re-
sulting performance of the linear is lower than that of
the matrix multiplication.

Fig. 5. Top-looking variant of LU-decomposition for solving linear
systems.
For AMD processors, tiling is no more necessary
ause the new algorithm with “wide” block-rows tol
tes the limited memory throughput (about 1300 M
n Athlon MP1800+/1530 MHz and 1000 MB/s
uron/900 MHz). Therefore, only strip-mining can
pplied, that makes the algorithm more simple

746 O. Bessonov et al. / Future Generation Computer Systems 21 (2005) 743–748

4. Results and comparisons with other
approaches

Performance results of the new algorithms are
presented in Fig. 6 for two AMD processors. On
Athlon (1530 MHz), the matrix multiplication algo-
rithm reaches about 80% of the peak speed (3060
MFLOPS) for small matrices that fit into the L2 cache
(256 kB), and reduces to 72% for bigger matrices.
For solving linear systems, performance increases with
the matrix size. Duron is a cheaper processor, with
smaller L2 cache (64 kB), simpler memory subsystem
and lower frequency. Its performance behavior is sim-
ilar.

These results are compared in Fig. 6 with the results
of the Athlon-optimized ATLAS software implemen-
tation[6]. The idea of the ATLAS approach is “Cache-
contained matrix multiply” when matrices are split into
square submatrices of small size. Several submatrices
can fit into L1 cache, and the amount of memory ac-
cesses can be reduced. For the Athlon-optimized im-
plementation, this size is 30× 30 (i.e. about 7 kB).

For the comparison, the results for AMD ACML
and Intel MKL libraries are also presented. It is
seen that the MKL is not adequate for AMD pro-
cessors. On the other hand, the results of Athlon-
optimized ACML library are closer to that of the
leaders.

The new algorithm demonstrates competitive per-
formance and wins on small and medium-size matri-
ces. In particular, it outperforms the ATLAS for the

Fig. 6. Performance of different algorithms for matrix multiplication (30 and
Duron-900 processors.

LINPACK-1000 benchmark (solving a linear system
of the size 1000). For Athlon (1530 MHz) and Duron
(900 MHz) processors the new results are 1705 and
977 MFLOPS respectively. These results are registered
as record values (for above processors) in the database
[3]. The best LINPACK-1000 results for ATLAS and
ACML libraries are shown in the table in Fig. 6.

The new results for Athlon processors are compa-
rable to that of some modern RISC computers. For ex-
ample, the best LINPACK-1000 result for the fastest
Alpha processor (1250 MHz) is 1945 MFLOPS. This
means that modern inexpensive commodity micropro-
cessors (like AMD Athlon) have become a very attrac-
tive alternative for performing scientific computations
and building low-cost computer systems and clusters.

Performance of the new algorithm will be even
higher on the new AMD64 CPUs (Opteron and
Athlon64). These processors have the extended 86–
64× architecture with some performance enhance-
ments like SSE2 FPU instructions and bigger register
sets. Due to this, more efficient implementations will
become possible in a future.

Below are the general properties of the BLAS 2.5
as compared to the ATLAS approach:

- it is more simple in implementation;
- it is more flexible for application to complicated ma-

trix shapes (e.g. in LU-decomposition);
- it minimizes the required memory access rate below

some reasonable (and sufficient) level;
- ces;
left plots) and solving linear systems (right plots) on Athlon-15

it behaves better for small and medium-size matri

O. Bessonov et al. / Future Generation Computer Systems 21 (2005) 743–748 747

- on the other hand, the ATLAS behaves better for very
large matrices.

The further optimization of new algorithms will be
based on the results of this comparison. The combina-
tion of two competing approaches looks very attractive
for implementing adaptive linear algebra kernels, to be
used in parallel software for clusters and MPPs.

5. Conclusion

The new methods and algorithms, described in this
paper, combine the efficiency of a large block approach
with the flexibility and scalability of vector–matrix op-
erations. They demonstrate the record level of perfor-
mance for several processors, can be easily adapted to
new architectures and incorporated into other serial and
parallel libraries.

Implementation for 86×/87× CISC CPUs (AMD
Athlon/Duron) tolerates low memory bandwidth and
does not depend much on blocking strategies and outer
cache levels. The record LINPACK-1000 results are
obtained with this algorithm and registered in[3].

In comparison with ATLAS[6], our algorithm
shows competitive performance and wins on some ma-
trix sizes. It is more flexible for processing narrow ma-
trices and for solving linear systems. To achieve better
results, these two approaches may be combined.

As a result, the ability to achieve multi-gigaflops
p mi-
c
c ter
s

A

ian
F 745
a

R

[,
ary

[2] O. Bessonov, D. Foug̀ere, K. Dang Quoc, B. Roux, Methods for
Achieving Peak Computational Rates for Linear Algebra Oper-
ations on Superscalar RISC Processors, in: Proceedings of the
PaCT-99, LNCS, vol. 1662, Springer, Berlin, 1999, pp. 180–185.

[3] J. Dongarra, Performance of Various Computers Using Stan-
dard Linear Equations Software, Report CS-89–85, University
of Tennessee, Knoxville, TN, 2003.

[4] J. Dongarra, D. Walker, The Design of Linear Algebra Libraries
for High Performance Computers, Lapack Working Note 58,
University of Tennessee, Knoxville, TN, 1993.

[5] J.M. Ortega, Introduction to Parallel and Vector Solution of Lin-
ear Systems, Plenum Press, New York, 1988.

[6] R.C. Whaley, A. Petitet, J. Dongarra, Automated Empirical Op-
timization of Software and the ATLAS Project, Parallel Com-
puting 27 (1–2) (2001) 3–35.

OlegBessonovreceived his diploma degree
in nuclear physics and system programming
in 1976 at the Moscow Institute of Physics
and Technology (MIPT). Then he worked
at the Institute for High Energy Physics as
a system programmer and a head of sys-
tem programming team. Since 1988, he is
a senior research scientist at the Institute
for Problems in Mechanics. In his work he
closely collaborates with Dr. Bernard Roux
and his colleagues from the laboratory L3M

at Marseille, France. His current research activities include design
of high performance algorithms, parallel and distributed computing,
development of efficient methods for incompressible hydrodynamics
and numerical investigation of fluid flows in crystal growth applica-
t

r
Na-

nd
e

eer-
the
em
for
n.
for

or-
m ille.
H ance
c l and
d

erformance on a single inexpensive commodity
roprocessor increases attractiveness of 86× CISC ar-
hitectures for building high-performance compu
ystems and clusters.

cknowledgements

This work was partially supported by the Russ
oundation for Basic Research (grants 01-01-00
nd 02-01-00210).

eferences

1] AMD AthlonTM Processor 86× Code Optimization Guide
Publication No. 22007, Advanced Micro Devices, Febru
2002.
ions.

Dominique Foug̀ere received compute
science engineer degree at the Research
tional Institute of Computer Science a
Automatics (INRIA) in 1976 where sh
worked as a system and network engin
developer. From 1983 to 1989 she had
head position of the network and syst
team at the National university center
technical and scientific information in Lyo
Since 1990 she has the head position
computer science in the group “High Perf

ance Computing in Mechanics” at the laboratory L3M in Marse
er current research activities include design of high perform
omputing, cluster management, HPC computing grids, paralle
istributed computing.

748 O. Bessonov et al. / Future Generation Computer Systems 21 (2005) 743–748

Bernard Roux received his PhD degree
in 1966 and then his state doctorate de-
gree in sciences in 1971 at the Marseille
University. He got a position in 1967 at
the Institute of Fluids Mechanics and cre-
ated the Computational Fluid Dynamics
team. He developed CFD in several areas:
fluid dynamics, heat/mass transfer, coupled
mechanisms, vibrational convection, etc.
His research activities include mathematical

and physical modeling of crystal growth processes, space-related
physical sciences, high performance computing. Presently he is
head of the group “High Performance Computing in Mechanics”
at the laboratory L3M in Marseille, manager of several research net-
works and research-training networks, co-editor of the Series “Notes
on Numerical Fluid Mechanics” (Springer, Germany), member of
Editorial Advisory Board of the journal “Microgravity Quarterly”
(Pergamon Press, USA). Awards: Silver Medal of CNRS, France
(1987); Docteur Honoris Causa of Perm State University, Russia
(1995).

	Development of efficient computational kernels and linear algebra routines for out-of-order superscalar processors
	Introduction
	Microarchitecture of processors and development of computational cores
	Matrix multiplication and solving linear systems
	Results and comparisons with other approaches
	Conclusion
	Acknowledgements
	References

