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Abstract — The results of calculating the convective flow in cylindrical porous interlayers are presented
as functions of the Rayleigh number, the thickness of the interlayer, and the three-dimensional perme-
ability anisotropy for various methods of specifying the temperature on the cylindrical surfaces. The
influence of the three-dimensional effects on the flow structure and heat transfer are analyzed. The exis-
tence of single-vortex and multivortex convection regimes is established and the conditions of transition
to oscillatory and unsteady flow regimes are investigated in terms of the basic parameters.

The considerable interest [1–11] in the numerical simulation of natural convection in a porous medium
bounded by two horizontal coaxial cylinders was initiated by important technological applications. These
studies were mainly based on the numerical solution of the two-dimensional Darcy-Boussinesq equations,
although for a fairly large ratio of the cylinder length to gap thickness three-dimensional effects develop in
the upper half of the annular channel even for low Rayleigh numbers Ra. This was shown in [1], where the
critical Rayleigh numbers Ra (as functions of the ratio r2/r1 of the radii of the outer and inner cylinders)
were obtained. At the critical Rayleigh number the regular two-dimensional convection regimes goes over
into unsteady three-dimensional flows.

In [1–7] convection in isotropic cylindrical porous layers was considered. However, porous materials
possess considerable permeability anisotropy. In [13] the critical Rayleigh number Ra at which convection
develops in an infinite horizontal layer of anisotropic porous material was found on the basis of linearized
equations. In [14] convection in plane porous interlayers with allowance for permeability anisotropy was
simulated numerically. In [8] the effect of permeability anisotropy on the structure of the flow and heat
transfer in annular porous interlayers was investigated and data on the average and local convection charac-
teristics for various Ra numbers and r2/r1 were given.

In [5] it was shown that under certain conditions secondary structures exist in the convection flow in
an isotropic porous interlayer and the boundaries of these regimes were investigated as functions of the Ra
number and the interlayer thickness. The fact that under certain conditions secondary structures develop in
homogeneous porous interlayers has been confirmed both experimentally and numerically [7].

In [9], which is a continuation of [2–4, 8], the flow structure in and the heat transfer through porous
anisotropic interlayers were simulated numerically within the framework of the two-dimensional model.
The development of secondary structures under these conditions also was confirmed. Particular attention
was given to the investigation of the effect of permeability anisotropy on the nature of the flow, namely, on
the process of restructuring of single- vortex into multivortex flows and vice versa.

In [10] the three-dimensional convection in an isotropic porous cylindrical interlayer was simulated nu-
merically on the basis of a solution of the Darcy-Boussinesq equations in temperature-vector potential vari-
ables for the radius ratio r2/r1 = 2 and an aspect ratio of the length to the radius of the inner cylinder
L/r1 = 2 at Ra numbers from 60 to 150. In [11] both two-dimensional and three-dimensional models of the
free convection in a cylindrical channel of annular cross-section occupied by an isotropic porous material
were investigated.
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In the present paper, the convection in a cylindrical anisotropic porous interlayer of large aspect ra-
tio (L/r1 = 16) is simulated numerically in the three-dimensional formulation under conditions of internal
heating, i.e., when the temperature of the inner cylinder is higher than that of the outer one. Both steady-state
and oscillatory regimes and transitions to unsteady flows are studied for two cylindrical interlayers of differ-
ent thickness (r1/r2 = 2 and

√
2) as functions of the Ra number and the relation between the permeability

coefficients in the spatial directions.

1. FORMULATION OF THE PROBLEM

In the variables V, p, and T (velocity, pressure, and temperature, respectively), using the linear Darcy’s
law and the Boussinesq approximation for the lift forces, we can write the equations of free convection in a
cylindrical anisotropic porous interlayer in the form:

V =
K
µ

(−∇∇∇p−ρ0gβT ) (1.1)

∇∇∇ ·V = 0 (1.2)

∂T
∂ t

+ ρ0cp[∇∇∇(VT )] = λ ∗∇2T (1.3)

K = E[kϕ ,kz,kr]T

Here, K is the permeability tensor, E is the unit tensor, ρ0 is the density of the liquid filling the pores,
β is the temperature expansion coefficient, cp is the specific heat of the liquid, λ ∗ is the effective thermal
conductivity of the porous medium without allowance for convection, µ is the dynamic viscosity, and kr,
kϕ and kz are the permeabilities of the porous medium in the radial, azimuthal and longitudinal directions,
respectively.

We will consider the problem of thermal convection in a cylindrical layer r1rr2 of length L on the basis
of Eqs. (1.1)–(1.3). In the generic case the boundary conditions have the form:

r = ri, i = 1,2, Ti(z) = 〈Ti〉+(zL−1 −0.5)∆Ti, Vr = 0

z = 0,L : Vz =
∂T
∂ z

= 0

where ∆Ti are the longitudinal temperature drops on the inner and outer walls (i = 1,2).
For investigating the three-dimensional effects we will use four types of boundary conditions for the

temperature

Γ1 : ∆T1 = ∆T2 = 0, 〈T1〉− 〈T2〉 = 1 (1.4)

Γ2 : ∆T1 = ∆T2 = 0.2, 〈T1〉− 〈T2〉 = 1 (1.5)

Γ3 : ∆T1 = 0.2, ∆T2 = 0, 〈T1〉− 〈T2〉 = 1 (1.6)

Γ4 : ∆T1 = ∆T2 = 0.2, 〈T1〉− 〈T2〉 = 0 (1.7)

In reducing the system (1.1)–(1.3) to dimensionless form, we take the quantities r1 (the radius of the
inner cylinder), λ ∗/(cpρ0L), 〈T1〉− 〈T2〉, λ ∗µ/(cpρpk0), and k0 = max(kϕ ,kz,kr) as the length, velocity,
temperature, pressure, and permeability scales, respectively.

We obtain the following system of equations

V = K(−∇∇∇p+ Ra∗egT ) (1.8)

∂T
∂ t

+∇∇∇(VT ) = ∇2T (1.9)

Ra =
ρ2gβ (〈T1〉− 〈T2〉)r1cpk0

(µλ ∗)
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Fig. 1. Channel flow computation diagram.

Fig. 2. Profiles of the temperature T (r) (a) and the function Nui(ϕ) (b) on the inner and outer (curves 1 and 2) boundaries
of the channel in the mid-section z = 8 for Ra = 200, boundary conditions Γ1, variant a (curves I and II correspond to the
64×128×32 and 64×128×16 grids, respectively).

Here, Ra is the seepage Rayleigh number, eg = g/|g | is the unit vector of the gravity force, and V, p,
and T are the dimensionless velocity, pressure, and temperature, respectively.

In addition to the characteristics of the flow and the temperature field, we will determine the local and
average Nusselt numbers on the inner and outer walls of the region in the middle cross-section z = L/2

r = ri, Nui(ϕ) =
∂T
∂ r

, 〈Nui〉 =
1

2π
ri

2π∫

0

Nui(ϕ)dϕ , i = 1,2 (1.10)

As the initial conditions we will take a temperature distribution linear along the radius and a zero velocity
field inside the cylindrical channel.

2. METHOD OF SOLUTION

For solving Eqs. (1.8), (1.9) we employed the finite volume method. Uniform spaced grids were used.
Second-order central differences were used for discretizing the convective terms in the temperature equation
(1.9).

Equations (1.8)–(1.9) were solved separately using the projection method modified for the Darcy-Boussi-
nesq equation.

The calculation algorithm consisted of the following stages: calculation of the intermediate velocity on
the basis of the finite-difference analog of Eq. (1.8); solution of the Poisson equation for the pressure and
correction of the velocity field; determination of the temperature field using the velocity obtained.

The finite-difference system of temperature equations was integrated in time using the implicit Crank-
Nicholson scheme. The Fourier method was used for solving the Poisson equation. This direct method of
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solution ensures the high computational efficiency of the algorithm and makes it possible to simulate three-
dimensional time-dependent processes numerically on 64× 128× 32 grids (in the ϕ ,z, and r directions,
respectively). The time taken to compute a single variant of the problem on this grid does not exceed 1
hour for a PentiumPro PC. As distinct from the studies mentioned in the Introduction, the problem is solved
over the entire domain without additional assumptions concerning symmetry. The steady-state solutions are
symmetric about the vertical diametral plane (ϕ = 0) and the violation of symmetry is one the first symptoms
of transition to the unsteady flow regime.

The method was tested by comparing the calculations carried out on 64× 128× 16 and 64× 128× 32
grids. In Figs. 2a and 2b we have reproduced the calculation results for variant a(kr = kϕ = kz = 1, boundary
conditions Γ1, and Ra = 200) in the middle cross- section (z = 8), namely, the temperature profile T (r) at
ϕ = 0 and the local Nusselt numbers Nu1 and Nu2 on the inner and outer surfaces. For these grids the
calculation results (curves I and II) are fairly similar (the maximum difference is 2.5%). Therefore, in
the main calculations we used the more economical 64× 128× 16 grid, which also ensured a satisfactory
three-dimensional representation of the boundary layers in the neighborhood of r = r1 and r = r2.

3. RESULTS OF THE PARAMETRIC INVESTIGATIONS

Table 1 gives the main results of our parametric investigations in the form of average values of the Nusselt
numbers 〈Nu1〉 on the inner cylindrical surface (r = r1) in the cross-section z = 8.

In Table 1 the letters a–f denote the variants with various dimensionless permeability coefficient distri-
butions in the directions kr,kϕ , and kz and the letters Γ1, Γ2, Γ3, and Γ4 denote the boundary conditions on
the cylindrical surfaces (1.4)–(1.7). For variants with a steady-state flow regime the steady values of 〈Nu1〉
are given and for variants with periodic oscillations the minimum and maximum values of 〈Nu1〉. Unsteady
regimes with aperiodic (chaotic) oscillations are denoted by “Unst”. Thus, Table 1 provides a flow regime
map over a wide parameter range.

In order to estimate the three-dimensional effects it is useful to compare the variants with boundary
conditions Γ1 and Γ2, which have similar parameters. In fact, the latter variant realizes the two- dimensional
formulation of the problem since in it there is no horizontal temperature gradient on the cylindrical surfaces
and ks = 0 is assumed. The replacement of kz = 0 by kz = 1 in boundary conditions Γ1 changes neither the
flow regime nor its characteristics. The temperature difference ∆T between the cylindrical surfaces initiates
a convective flow identical in all annular cross-sections perpendicular to the z axis.

As can be seen from Table 1, for Ra = 200 and 300 (r2/r1 = 2) and kz = 0.2 the values of 〈Nu1〉 are
almost equal for boundary conditions Γ1 (variant b) and Γ2 (variants b and c), and in the three-dimensional
formulation for kz = 1 (variant b for conditions Γ2) 〈Nu1〉 exceeds the corresponding value for Γ1 by not
more than 0.5%, all other permeability coefficients being equal. Thus, for moderate Rayleigh numbers the
two-dimensional formulation of this problem is completely justified for calculating engineering heat transfer
characteristics.

On the other hand, in the absence of temperature difference (∆T = 0) between the cylindrical surfaces,
when a constant horizontal temperature gradient (∆T1 = ∆T2 = 0.2 — boundary conditions Γ4 in Table 2) is
maintained, i.e., in the presence of a linear dependence of T (z) on the outer and inner boundaries, convective
flows develop. These flows are directed along z toward the right and left in the upper and lower halves of
the channel, respectively. This can be seen from the temperature isoline maps in the middle annular and
vertical longitudinal sections (Figs. 3a and 3b). On the inner and outer boundaries of the annular channel
in the vertical mid-section of the cylinder the values of the local Nusselt numbers (Fig. 3c) are an order of
magnitude less than the analogous values of Nui(ϕ) for boundary conditions Γ2. The behavior of the curves,
which are symmetric about zero, gives a zero value of 〈Nu〉 (Table 1, the boundary condition Γ4).

Thus, in the presence of both longitudinal and radial temperature gradients (conditions Γ2) the three-
dimensional convective flow through the porous medium between the cylinders is a superposition of the
above- mentioned flows corresponding to boundary conditions Γ1 and Γ4.

The boundary conditions Γ3 are a particular case of conditions Γ2 for which the outer cylindrical surface

FLUID DYNAMICS Vol. 36 No. 1 2001



134
B

E
S

S
O

N
O

V
etal.

Table 1

Γi N kr kϕ kz Ra(r2/r1 = 2) Ra(r2/r1 =
√

2)
200 300 500 800 1200 200 300 500 800 1200

Γ1 a 1 1 0 3.846 Unst – – – 4.369 5.369 – – –

Γ1 a 1 1 1 3.846 Unst – – – 4.369 5.369 – – –

Γ1 b 0.2 1 0 3.549 4.417 – – – – – – – –

Γ1 b 0.2 1 0 3.549 4.417 – – – – – – – –

Γ2 a 1 1 1 Unst Unst – – – – – – – –

Γ2 a 1 1 0.2 3.848 Unst – – – – – – – –

Γ2 b 0.2 1 1 3.556 4.437 – – – – – – – –

Γ2 c 0.2 1 0.2 3.551 4.419 5.785 7.350 8.967 – – 5.355 6.84 –

Γ2 d 0.2 0.6 0.6 2.813 3.493 4.574 5.825 Unst – – 4.229 5.31 Un st

Γ2 e 0.2 0.2 1 1.705–2.338 2.022–2.917 – – – 2.924 2.812–3.285 – – –

Γ2 f 0.2 1 0.6 3.554 4.424 5.792 7.360 8.970 – – – – –

Γ3 a 1 1 1 Unst Unst – – – – – – – –

Γ3 b 0.2 1 1 3.549 Unst – – – – – – – –

Γ3 e 0.2 0.2 1 1.701–2.327 2.021–2.866 – – – – – – – –

Table 2

Ra(r2/r1 = 2) Ra(r2/r1 =
√

2)
Γi N kr kϕ kz 200 300 500 800 1200 500 800

〈Nu1〉 Vz 〈Nu1〉 Vz 〈Nu1〉 Vz 〈Nu1〉 Vz 〈Nu1〉 Vz 〈Nu1〉 Vz 〈Nu1〉 Vz

Γ1 c 0.2 1 0.2 3.55 1 4.42 1.49 5.78 2.48 7.35 3.92 8.97 5.82 5.35 1.77 6.84 2.83

Γ2 f 0.2 1 0.6 3.55 2.89 4.24 4.25 5.79 6.84 7.36 10.5 8.97 15.1 – – – –

Γ2 d 0.2 0.6 0.6 2.81 2.85 3.49 4.16 4.57 6.63 5.82 10.1 Unst – 4.23 5.25 5.31 8.32

Γ4 d 0.2 0.6 0.6 – – – – – – 0 11.8 – – – – – –
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Fig. 3. Isolines of the temperature (a) and (b) in the longitudinal section ϕ = 0 and the cross-section z = 8, and the function
Nui(ϕ) (c) on the inner and outer (curves 1 and 2) boundaries of the channel in the cross-section z = 8 for Ra = 800 and
boundary conditions Γ4, variant d.

Fig. 4. Dependence Nui(ϕ) (a) and (b) for variants d and c on the inner and outer (curves 1 and 2) boundaries of the channel
in the cross-section z = 8 for Ra = 500 (I) and Ra = 800 (II), and boundary conditions Γ2.

is isothermal (1.7). In Table 1 we have given the maximum and minimum values of 〈Nu1〉 for periodic
oscillations under conditions Γ2 and Γ3. There are no significant differences in either the qualitative (both
regimes, periodic and unsteady, are conserved) or quantitative aspects. In variants Γ2 and Γ3 in both the
steady-state (Ra = 200, variantb) and periodic (variant e) regimes the maximum difference in 〈Nu1〉 is less
than 2%. Therefore, in what follows, we will mainly consider regime Γ2.

In Table 2 we have given 〈Nu1〉 together with the maximum horizontal velocities Vz in the mid-section
z = 8 for several calculation variants. Variants c and f could correspond to a textile winding of porous
material with azimuthal orientation of the fibers used as insulation and variant d to alternating azimuthal
and longitudinal orientations.

With increase in Ra the average Nusselt numbers and |Vz |max also increase in all the variants (c, d, and
f ), and for narrower interlayers with r2/r1 =

√
2 the mean heat flux on the cylindrical surface is always less

than that for r2/r1 = 2.

A comparison of variants c,d, and f makes it possible to estimate the role of the permeability coefficient
distribution in different directions. With increase in kϕ , all other things being equal (variants d and f ),
〈Nu1〉 also increases since the flow with respect to the angular coordinate and the heat transfer become more

FLUID DYNAMICS Vol. 36 No. 1 2001



136 BESSONOV et al.

Fig. 5. Velocity fields Vz(z,r) along z in the upper and lower halves of the channel in the longitudinal section for Ra = 800
and boundary conditions Γ2, variant d.

Fig. 6. Isolines of the temperature (a) and (b) in the cross-section z = 8 and the longitudinal section γ = 0 for Ra = 800 and
boundary conditions Γ2, variant d.

intense while the velocity Vz increases only slightly. It is interesting to note that for Ra = 1200 transition to
the unsteady regime occurs at a lower azimuthal permeability coefficient kϕ = 0.6 (variant d) as compared
with kϕ = 1 (variant f ) when the more intense flows and heat transfer in the cross-section stabilize the total
convective flow in the volume considered. At the same time, the permeability kz mainly affects the velocity
Vz and the flow stability. In particular, an increase in kz from 0.2 (variant c) to 0.6 (variant f ) leads to
the maximum horizontal velocity Vz increasing by almost threefold, i.e., almost linearly, the corresponding
maximum values of 〈Nu1〉 not being affected.

Thus, the permeability anisotropy leads not only to quantitative changes in the convection intensity (ex-
pressed here in terms of 〈Nu1〉) but also, which is more significant, to qualitative changes, namely, to a
change in regimes. In particular, whereas for Ra = 200 (boundary conditions Γ2) in isotropic interlayers
(variant a) for kz = 1 an unsteady convection regime in which only instantaneous values of 〈Nu1〉 can be
observed is realized, a decrease in kz to 0.2 leads to a steady-state regime.

It is also interesting to note the possibility of controlling the flow regime using the permeability parameter
in the radial direction. As compared with kr = 1 (variant a), a decrease in kr to 0.2 (variant b) leads to
weakening of the Bénard-type convection in the upper half of the channel and the establishment of a steady-
state flow and heat transfer regime. For variants c, d, and f (kr = 0.2) a steady regime is also established up
to Ra = 1000 and 1200 (variants d and c).

For the same value of kr = 0.2 in variant e when kϕ = 0.2 and kz = 1 (as distinct from variant c in
which, on the contrary, kϕ = 1 and kz = 0.2), a periodic regime is established so that 〈Nu1〉 oscillates in
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Fig. 7. Dependence 〈Nu(t)〉 on the inner and outer (curves 1and 2) boundaries of the channel in the cross-section z = 8 for
Ra = 200 (I) and Ra = 300 (II), and boundary conditions Γ2, variant e.

Fig. 8. Isolines of Vz (a) in the cross-section z = 8 and of the temperature (b) in the longitudinal section ϕ = 0 for two
instants of time, Ra = 200 and conditions Γ2, variant e.

the neighborhood of average values (equal to 2.02 and 2.47 for Ra = 200 and 300) which are smaller than
those for variants c and d since the heat transfer intensity is mainly determined by the permeability in the
azimuthal direction.

In addition to considering the average characteristics, it is of some interest to analyze the local charac-
teristics of the flow and heat transfer. In Fig. 4 we have compared graphs of the variation of the local Nui
numbers on the inner and outer cylindrical surfaces (i = 1,2) for Ra = 500 and Ra = 800 (curves I and II)
for two cases of the permeability coefficient distribution (Figs. 4a and 4b correspond to variants c and d). In
variant c (kϕ = 1) for both values of Ra the local Nui numbers are greater than those in variant d (kϕ = 0.6)
over the entire domain of variation of ϕ . Regardless of kz, the nonuniformity of the distribution of Nui(ϕ)
also increases with kϕ .

An increase in the permeability along z leads to an increase in the velocity Vz (Table 2)., i.e., to a strength-
ening of the longitudinal horizontal component of the spiral flow in the gap between the cylinders. In Fig. 5
we have schematically plotted a graph of the velocity Vz distribution along z for variant d and Ra = 800 as a
function of two variables: Vz(z,r). In Fig. 6 we have reproduced the temperature isolines in the mid-section
z = 8 and the vertical longitudinal section ϕ = 0, respectively.

Even for smaller numbers Ra = 200 and Ra = 3000, with increase in kz an oscillatory flow develops with
the formation of secondary vortices along z in the upper half of the cylindrical layer in the same way as
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the Taylor-Görtler vortices in the problem of fluid flow in a cavity initiated by the motion of the boundaries
[12]. In Fig. 7 we have plotted graphs of the oscillations of 〈Nui(t)〉, i = 1,2 as functions of time for this
case (curves I and II for Ra = 200 and 300, respectively). Consequently, with increase in Ra the process of
approach to a periodic regime is accelerated and the oscillation frequency increases.

The velocity Vz isolines in the cross-section z = 8 and the temperature isolines in the vertical longitudinal
section ϕ = 0 given for two instants of time (t = 4.4 and 10) in Figs. 8a and 8b show that the oscillatory fluid
flow through a porous medium filling the upper half of a cylindrical channel leads to a periodic variation of
the temperature in this zone. Moreover, this flow affects the velocity Vz distribution in the upper half of the
annular cross-section (in Fig. 8a) and disturbs the equidistant stratified isoline structure characteristic of the
lower part.

Summary. The flow structures, the temperature and velocity fields, and the average and local heat transfer
characteristics in the space between horizontal coaxial cylinders filled with an anisotropic porous material is
investigated numerically. Three characteristic flow regimes, namely, steady-state, oscillatory, and unsteady
(the last goes over into the chaotic regime), are observed depending on the basic parameters: the Rayleigh
number, the interlayer thickness, and the three-dimensional permeability coefficient distribution. The role
of these factors in the formation of the three-dimensional flow and their relative effect on the restructuring
of the flow and heat transfer regimes are demonstrated.

The work was carried out with support from the Russian Foundation for Basic Research (project No.
96-01- 000584).
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