Using a Parallel CFD Code for Evaluation of Clusters and MPPs

Oleg Bessonov
Institute for Problems in Mechanics
of the Russian Academy of Sciences
101, Vernadsky ave., 119526 Moscow, Russia
bess@ipmnet.ru

Abstract

We consider some methods of evaluating parallel per-
formance on clusters and MPP platforms. These methods
are based on using a parallel code for the numerical sim-
ulation of 3D incompressible viscous flow in a cylindrical
domain. Details of the efficient parallelization of this code
are discussed for distributed memory computers with rela-
tively slow communication links. Results of measurements
of parallel performance are presented for several comput-
ers of different architectures, with the number of processors
used from 1 to 16. Additionally, direct measurements of ba-
sic performance indicators are considered, such as serial
performance and speed of interprocessor communications.
Finally, the comparative performance analysis is presented
for these two sorts of measurements.

1. Introduction

Correct measurement of computer performance is a very
important task. For traditional serial computers, there exist
some standardized benchmarks. The most known of them
(at least for scientific and engineering applications) is the
SPEC CPU2000 benchmark suite [1]. However, this suite
is a licensed product and therefore not available for typical
benchmarkers. Also, it consists of several “heavy” bench-
marks (e.g. 14 separate programs in SPECfp_base2000
set) that complicates a measurement exercise. For this rea-
son, using some application program as an “approximation”
seems to be more attractive. A good sort of such approx-
imating benchmark can be the 3D CFD code considered
here. The previous experience of measurements with this
code on many computer systems demonstrates the reason-
able correlation with published SPECfp_base2000 results.

The natural extension of a benchmarking methodology
for parallel computers is to use the same code in the paral-
lelized form. The considered code is realistic and not easily

Dominique Fougere, Bernard Roux
Laboratoire de Modélisation et Simulation
Numérique en Mécanique, L3M-IMT
La Jetée, Technopdle de Chateau-Gombert
13451 Marseille Cedex 20, France
{fougere,broux}@l3m.univ-mrs.fr

parallelizable, therefore it can serve as a sensitive indica-
tor of parallel performance of distributed memory comput-
ers with relatively slow communication links. At last, grid
dimensions of discretized equations can be varied in order
to represent different problem sizes, as well as to evaluate
scalable problems. It should be noted also, that there is no
general-purpose parallel benchmark in the SPEC collection
yet.

In order to be more representative, the considered code
must be implemented in the most efficient manner, both in
serial and parallel forms. Due to high computational poten-
tial of modern microprocessors and quality of compilers,
optimizing the single-processor performance is not a seri-
ous problem now. In contrast, the communication speed of
interconnection networks is usually much lower than neces-
sary to exploit fully the intrinsic parallelism of numerical al-
gorithms. With the rapid development of superscalar micro-
processors, the gap between computational speed and inter-
connection capacity becomes even wider. Therefore, much
attention should be paid on the development of numerical
methods and parallelization algorithms that are economical
from the point of view of data exchanges.

For simulations of flows in 3D regular domains, the Fi-
nite Difference (FDM) and Finite Volume (FVM) meth-
ods have proved to be very efficient [2]. Straightforward
implementations of these methods normally use a substan-
tial fraction of “explicit” time integration codes, that don’t
need data exchanges during the computational steps. Only a
small part of data, the separator (boundary) planes between
subdomains, belonging to different computational nodes,
need to be transferred.

Unfortunately, a realistic simulation of incompressible
viscous flows can’t be performed by pure explicit code due
to timestep constraints, especially for flows with highly dif-
fusive processes. The implicit methods should be incorpo-
rated, that involve solving 3-diagonal linear systems in ev-
ery spatial direction. Another numerical difficulty of incom-
pressible flow simulation arises from the physical nature of

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

pressure. The pressure Poisson equation must be solved
globally in the entire domain on every timestep. In or-
der to avoid expensive iterative methods, the direct Fourier
method is often used that involves Fast Fourier transfer
(FFT) steps and 3-diagonal sweeps. Parallelization of FFT
requires full data exchange between nodes and is therefore
very uneconomical. In order to reduce amount of data ex-
changes, several approaches have been suggested by dif-
ferent authors [3, 4]. However, these algorithms are either
much less accurate than necessary, or less economical than
the Fourier method.

The algorithm considered here is based on the previous
work [5] with the extension to multidimensional decompo-
sition of a computational domain. To avoid excessive data
exchanges, a new method for solving Poisson equation has
been developed, based on a cyclic reduction of arising linear
systems in frame of the FACR approach [6, 7]. As a result,
the algorithmically and numerically economical implemen-
tation has been obtained for the number of processors up to
16.

The developed parallel code has been used for bench-
marking several distributed memory machines — massive
parallel computers (MPP) and multiprocessor node (SMP)
clusters. These tests have been complemented with di-
rect measurements of basic performance indicators — single-
processor computational performance and speed of inter-
processor communications. Some previous work has been
performed in this area [8]. Current analysis is based on the
evaluation of parallelization efficiency of the presented code
for different number of processors (2, 4, 8, 16) and problem
sizes in comparison with the measured computational and
communication characteristics.

2. Numerical method and basic parallelization
of the algorithm

The numerical problem considered here is the solution
of 3D non-stationary Navier-Stokes equations in Boussi-
nesq approximation for incompressible viscous flow in a
cylindrical domain. This sort of simulation is used in crys-
tal growth applications, like semiconductor melt flows in
Czochralski apparatus [9] or processes above the surface of
a growing aqueous-soluble crystal, and in modeling of nat-
ural convection in space experiments [10].

The velocity-pressure formulation and FVM discretiza-
tion are employed, with the decoupled solution of momen-
tum, pressure and temperature equations using the Frac-
tional step (pressure correction) method. The time integra-
tion scheme is partially implicit, with the implicit treatment
of the most critical terms using ADI (Alternating directions
implicit) approach. The pressure Poisson equation is tra-
ditionally solved by efficient Fourier method, that involves
FFTs in two spatial directions and 3-diagonal systems so-

lutions in the last direction. This numerical method is fully
direct and doesn’t involve costly iterative steps.

From the point of view of data processing, the computa-
tions are organized by the following way:

e The cylindrical computational domain is considered as
a 3-dimensional array (p, z,7). All computations are
performed in the most efficient manner, using the 1-st
index of array as the innermost one in Fortran loops.
An iteration of the outer loop can be considered as
computations in a plane (i, z), that is moving in the
direction r as a “frontal plane of computations” [5].

o All explicit parts of the algorithm are trivial and simply
form 2D loops within this plane of computations.

e The implicit part is split into solving 3-diagonal linear
systems in all 3 directions (¢, z,), each consisting of
2 sweeps (forward and backward) in corresponding di-
rection. All sweeps in the directions ¢ and z involve
processing of data located within 2D plane of compu-
tations. Sweeps in the direction r look like a slow mo-
tion of this plane in forward or backward direction.

e The Fourier method comprises FFTs in the directions
¢ and z, that again involve processing within a plane
of computations, and solving 3-diagonal systems in the
direction r, implemented as for the implicit step.

The parallelization method is based on the splitting a
computational domain in the last 2 directions, r and z.
The current implementation includes the following variants:
1x1,2x1,4%x1,4x2and4 x 4 (Fig. 1), from 1 to 16
CPUs (with a possible extension to 8 x 4 for 32 CPUs).

Figure 1. 1D and 2D decompositions of a com-
putational domain.

Consider first the parallelization method for 1-
dimensional splitting (Fig. 1, left).

e Computational domains are overlapped, with one
neighbour’s plane (2D array of data) stored in a node
for each boundary. This is necessary for calculation of
some terms in discretized equations.

e All parts of the numerical algorithm involving calcu-
lations only within a plane of computations (i, z) are

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

processed independently in each node and don’t need
data exchanges. These parts include all explicit steps,
implicit sweeps in the directions ¢ and z, and FFT
transforms in these directions. Data exchanges be-
tween adjacent processor nodes are performed only be-
tween these steps (when necessary), transmitting full
2D arrays of data.

e Sweeps in the direction r can’t be parallelized in frame
of the conventional 3-diagonal solver. Instead, the
twisted factorization is used for 2 processors, or two-
way parallel partition method [11, 5] for 4 or more pro-
cessors (Fig. 2). These methods employ more compli-
cated way of Gauss elimination procedure, that can be
done simultaneously in all subdomains. The modified
sweeps are performed as frontal planes of computa-
tions, with exchange of full 2D data arrays between
adjacent nodes when necessary. Parallel solution of 3-
diagonal system on 4 processors requires 3 to 6 such
exchanges (depending on the sort of 3-diagonal ma-
trix).

Figure 2. lllustration of the 2-way method of
parallelization for 2 (left) and 4 (central, right)
processors.

As a result, the parallelized numerical method remains
algebraically identical to the sequential one. This is dif-
ferent from the iterative domain decomposition approach,
when the efficiency depends on convergence properties of
the algorithm and can be violated by the splitting.

The above method has demonstrated the good paral-
lelization efficiency [5, 8]. However, the increased com-
plexity of solving 3-diagonal systems limits the number of
processors by 4, at most 8. The natural way to overcome
this limitation is to extend decomposition into the 2-nd spa-
tial direction (z). This would increase the limitation to
4 x 4 = 16 processors (Fig. 1, right)..

The parallelization procedure and data distribution for
the direction z are similar to those of the direction r for
almost all steps of the algorithm. However, FFTs in the di-
rection z can’t be efficiently parallelized because multiple
transmissions of all processed data are required. The way
to reduce the number of data transfers is to split a computa-
tional domain in the remaining spatial direction (i) and re-

arrange data for this operation. Figure 3 illustrates this rear-
rangement (blocked transposition) for 4 subdomains, when
3/4 of all data are involved into an exchange.

do|d1|d2|d3 do d1 d2 d3| » CPU 3 N
cOfc1|c2|c3 c0 c1 c2 c3 CPU 2
b0|b1|b2|b3 b0 b1 b2 b3| CPU 1
a0|al|a2|a3 a0 a1 a2 a3|, CPUO

CPU 0 1 2 8

Figure 3. Blocked transposition for paral-
lelization of FFT in the direction z.

The following steps of the algorithm — FFT in the direc-
tion z, 3-diagonal sweeps in the direction r, and inverse FFT
in z — are performed on rearranged data independently in
each processor. Finally, another transposition is required in
order to return resulting data into the initial distribution. As
a result, the parallelized procedure for the Fourier method
would look as follows:

FFT(y), transposition,
FFT(z), 3-diag(r), FFT(z),
transposition, FFT ()

3. Extension of the parallelization method and
techniques

The described procedure requires an exchange of full 3D
data arrays between processors, while for the other steps of
the algorithm only 2D boundary planes must be transferred.
Since the speed of interprocessor communications of mod-
ern parallel computers is much lower than their computa-
tional performance, this step would involve long delays and
dramatically reduce the efficiency of parallelization.

In order to lower the required amount of data transfer,
a new method for solving pressure Poisson equation has
been developed. The method is employed to 2D linear sys-
tems obtained after performing FFTs in the direction ¢. Itis
based on the FACR (Fourier analysis with cyclic reduction)
approach [6, 7] and consists of 3 stages: cyclic reduction
of the original matrix, solution of the reduced linear system
by the Fourier method, and substitution of results into the
remaining equations.

The method of cyclic reduction itself is used for sim-
plifying 3-diagonal and blocked 3-diagonal linear systems.
One iteration of this method halves the number of equations
in a system using the way illustrated below. Let us consider
a 3-diagonal system:

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Tio+ Az + = Yi—1
Tic1 + Az + T Yi
T + ATit1 + Tizo = Yin

If we multiply every second equation (i-th in this case)
by —A and add two adjacent equations to it, we obtain the
reduced linear system:

Tico+ (2= A?) @i+ Tigo = yic1 — Ayi +Yirt

Substituting A() = 2 — A2 and ygl) =yi1— Ay +
Yi+1, We obtain the system of equations of the same type
and can therefore employ the cyclic reduction procedure
again. After several iterations, the resulting system can be
solved by any convenient method, with the following back-
substitution steps in order to find the remaining unknowns.

In our case, the blocked 3-diagonal system is solved,
where A is a 3-diagonal matrix itself. As a result, the new
matrices A1), A2) etc are no more 3-diagonal. However,
they can be factored into simple 3-diagonal matrices, and
the resulting systems can be resolved by several repetitions
of 3-diagonal algorithm.

Every iteration of the cyclic reduction increases the com-
plexity of the numerical algorithm and sophisticates the data
exchange pattern. As a compromise, the 2-step cyclic re-
duction scheme has been chosen, with the 4-fold reduc-
tion of matrix size and amount of data exchanges in Fourier
method. Despite the slight increase of data transfers in an-
other parts of the algorithm, the resulting amount of trans-
missions is now on the reasonable level and doesn’t influ-
ence so much the efficiency of parallelization.

Now consider some technological improvements of par-
allelization methods. First of them concerns the structural
complexity of the parallel code (in comparison with the se-
quential one). This complexity arises in particular from the
increased number of sorts of subdomains with a variety of
boundary conditions: external (physical), and internal (be-
tween subdomains). In order to simplify the code flow, the
alternating numbering scheme is proposed. If, for example,
the domain is split into 4 subdomains in some direction,
data elements (data points) in this direction are numbered
in alternating order (Fig. 4). Due to this, codes in every
two adjacent nodes (0 and 1, 2 and 3) become more unified,
and the total number of different boundary conditions is re-
duced. More important, all data exchanges are performed
uniformly in all nodes. Additionally, the alternating num-
bering scheme naturally corresponds to the two-way paral-
lel partition method for solving 3-diagonal linear systems.

The next point is a choice of communication library. The
most standard one is the MPI. Unfortunately, some parallel
systems may lack a MPI implementation at all, or may of-
fer more efficient option like SHMEM, GM or MPL. For

e >« o«

[of 1]2]a] [e]t]2]s]

Figure 4. Standard (left) and alternating (right)
numbering schemes.

this reason, the library-independent approach has been cho-
sen, with a set of intermediate data exchange routines used
instead of MPI. All library-specific calls are encapsulated
within these routines. As a result, a parallel application pro-
gram becomes system-independent. In order to adapt to any
new communication protocol, only a small set of routines
must be rewritten. Sometimes, there exist incompatibilities
in different implementations of the same library, or some
compiler problems, and the library-independent approach
is useful in this case.

This approach also allows to accomplish some specific
optimizations of data exchanges without modification of ap-
plication code, such as splitting blocks to be transferred, or
regulating duplex mode of transmission by some way. An-
other thing necessary for parallel optimization is the renum-
bering (remap) of allocated processor nodes, that can be im-
portant for better adaptation of a parallel computer topol-
ogy (SMP-nodes, 2D-grids, NUMA, heterogeneous archi-
tectures etc) to the structure of an algorithm. For example,
in case of two-dimensional decomposition on Fig. 1 (right)
processors in a bi-processor SMP-node may be assigned ei-
ther to two horizontally adjacent subdomains (e.g. subdo-
mains 0 and 4, 1 and 35, etc), or to two vertically adjacent
ones (0 and 1, 4 and 5, etc), depending on the resulting effi-
ciency.

Up to now, the intermediate communication routines
have been adapted to the following protocols: NX (Intel
i860), Parix (Parsytec), PVM, MPL (IBM SP), SHMEM
(Cray T3E, SGI) and MPI in different incompatible imple-
mentations (MPIch, LAM etc).

4. Evaluation of basic computational and com-
munication performance

Apparently, the efficiency of parallelization depends pri-
marily on the single-processor performance of computa-
tional code, as well as on the speed of interprocessor com-
munications. Generally, the ratio of the computational per-
formance to the communication speed determines the im-
portant parameter, that monotonically influences this effi-
ciency.

For measuring the computational performance, we use
the single-processor variant of the same 3D CFD code, with
the problem size 70 MB (grid size 128 x 64 x 92). The

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

MFLOPS rate (for 64-bit arithmetic) achieved by this code
is used as a performance indicator. All measurements on
SMP nodes are performed in single-program and multiple-
program runs, with the number of copies corresponding to
the number of processors. The latter measurements account
shared memory conflicts and represent the real-life situation
when SMP nodes are fully loaded with processes.

The results of these measurements for several typical
platforms and different compilers are presented in Table 1
and Fig. 5 for single-program and dual-program runs. These
platforms are widely used for building inexpensive PC clus-
ters.

Table 1. Program execution speed in single-
program and dual-program runs (MFLOPS).

processor compiler| MHz | 1-prog|2-prog| ratio

Pentium-4-1800 Intel |1800|575.0| - -

Athlon-MP1800+| PGI |1525|419.5|316.2|75.4 %
Athlon-MP1800+| GNU |1525|362.7|294.1 |81.1 %
Athlon-MP1200 | GNU |1200| 309.2 | 266.6 |86.2 %
Pentium-III-1000| GNU |1000| 128.1 | 102.4 {80.0 %
Pentium-III-550 | GNU | 550 | 97.5 | 84.5 [86.7 %

700

600 — M

500]
L 400
9
300
=

200 +

100 -

0 4
PIII-550 PII-1000 MP1200 MP1800+ MP1800+ P4-1800
GNU GNU GNU GNU PGI Intel
W1 proc 02 proc

Figure 5. Serial performance of several typical
platforms.

It can be seen that the execution speed of each process in
adual-programrun is degraded on faster configurations (rel-
ative to a single-program run) due to the memory through-
put saturation. Because of this, the performance superiority
of the PGI compiler over the GNU (on the MP1800+) be-
comes lower, from 15.7 % for the single-program run to

7.5 % for the dual-program run. Similarly, the difference
between the MP1800+/1525 and MP1200 (using the same
inefficient GNU compiler) is reduced from 17.3 % to 10.3 %
(while the frequency difference is 27.1 %).

Comparisons with Intel processors show that the old dual
Pentium-III server platforms (considered before as candi-
dates for building clusters) demonstrate disappointing per-
formance level. On the other hand, the new Pentium-4 pro-
cessor with RAMBUS memory happened to be 37 % faster
than the Athlon-MP. Comparing to the dual-program run
of the process on the Athlon-MP, it is 82 % faster, giv-
ing for the single Pentium-4 some 91 % of the throughput
of the dual Athlon-MP system on such sort of problems.
Partly this result was achieved by using the new SSE2 float-
ing point unit supported by the Intel compiler. Without the
SSE2 option, the Pentium-4 overruns the Athlon-MP CPU
by only 15 %. Note however that the Pentium-4 perfor-
mance is often non-stable. It depends on many factors and
is very sensitive to the compiler’s quality and programmer’s
experience. For some portion of the reference CFD code,
the observed speed of the Pentium-4 processor happened to
be lower than that of the Athlon-MP.

The communication speed was measured by transferring
large arrays of data (32 — 64 KB) between processors in
one-way and duplex modes. This corresponds to the typ-
ical size of 2D boundary planes to be exchanged between
subdomains for most cases. For such block size, the near-
asymptotical data transfer speed is usually achieved for all
considered communication environments.

Two sorts of test programs have been used: the
public domain “"MPI Performance Test Suite” from
http://parallel.ru/ftp/tests/ (programs
“transfl” and "transf2”), and the custom test pro-
gram. The latter employs more realistic method when
arrays to be transferred are shifted in memory at every
iteration in order to avoid misleading cache effects. For this
reason, their results are sometimes lower than that of the
first test method, especially in intra-node shared memory
measurements.

In order to simulate real-life situation when every CPU in
a node communicates with its counterpart in another node,
twin inter-node communications have been tested also (in
duplex transfer mode).

The results of these measurements (in MB/s) on dual
Athlon-MP cluster for different sorts of interprocessor com-
munications are presented in Table 2 and Fig. 6. Data for
duplex and twin-duplex modes are given in the table for ev-
ery single transfer flow, therefore the total throughput of
these transfers is two and four times higher (respectively).

Results for 100-Mbit Ethernet auxiliary network are
given for the comparison and evaluation of driver quality.
It can be seen that efficiency of 100-Mbit implementation
is high: 86 % for one-way transfers, and 76 % for duplex

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Table 2. Speed of communication between
processors (in MB/s).

intra-node |inter-node |inter-node | inter-node

program [mode of | (shared | Dolphin | Gigabit | 100 Mbit

transfer | memory) SCI Ethernet | Ethernet

transf1” |one-way | 500-600| 200 56 10.8
transf2” |duplex 140 120 36 9-10
custom |one-way | 240 160 53.5 10.8
custom |duplex 120 105 34.5 9.5

custom |twin-dplx| - 88 28 -

100 Mbit

Gigabit SCI intra-node
\l one-way Oduplex B twin-duplex\

Figure 6. Communication throughput of dif-
ferent interconnects in MPI.

transfers (relative to 2 x 100 Mbit/s theoretical peak owing
to hardware duplex support).

For Gigabit Ethernet, efficiency is lower and varies from
about 45 % (one-way) to 29 % (duplex, relative to 2 x 1000
Mbit/s peak). For twin-duplex transfer, total throughput
achieves 4 x 28.0 = 112 MB/s, i.e. 45 % of the 2 x
1000/8 = 250 MB/s peak value.

These moderate results can be explained partly by a
poor implementation of software levels (driver and MPI
routines), supposedly involving redundant data movements
between buffers. Some limitation can be imposed by the
very nature of Gigabit Ethernet protocol (headers, block
lengths, delays etc), TCP/IP inefficiency, and also by the
limited throughput of the PCI64/33 port to which an Ether-
net adapter is connected (266 MB/s peak rate).

The best inter-node results are obtained for Dol-
phin/Scali/SCI links plugged into the advanced PCI64/66

ports with the extended throughput (533 MB/s peak rate).
For twin-duplex transfers, total throughput achieves 4 x
88 = 350 MB/s. This benefits from the hardware duplex
feature of the SCI interconnects, and reaches about 65 % of
the peak rate of the PCI64/66 port.

Intra-node transfers seem to be not efficient as they could
be. The main reason of this inefficiency is seen from the
comparison of the results for “transf1” and custom (one-
way) test programs: in the last case data are transmitted
between 2 processors through the shared memory, while in
the first case they can arrive to the interprocessor bus di-
rectly from the processor caches. Also, a software level
(MPI]) implementation could be the reason. Another imple-
mentations of MPI libraries will be evaluated for intra-node
communications in a future.

S. Evaluation of parallel performance

During the last years, many new parallel machines have
appeared, including the novel class — multiprocessor node
(SMP) parallel computers and clusters. Combining several
processors in a single node with common shared memo-
ries allows to isolate traffic between neighbour processors
within this node, thus reducing inter-node communications.
Also, the speed of intra-node exchanges is usually several
times higher due to ”directcopy” transfer in memory.

The presented parallel code has been used for evaluating
parallel performance of several computers, mainly of this
new class, in order to reveal their communication behaviour
and applicability to this class of numerical problems. Ad-
ditionally, an investigation of single processor performance
and communication network characteristics has been per-
formed, using the methodology described in the previous
section. Main characteristics of all analyzed computers and
some results of this investigation are presented in Table 3.

The MFLOPS results are presented for the problem size
70 MB (grid 128 x 64 x 92) in multiple-program runs. The
communication speed was measured in duplex mode. Both
intra-node and inter-node exchanges are shown (top and
bottom numbers, respectively). When appropriate, mea-
surements were performed in two regimes: heavy (multi-
duplex), when every CPU in a node communicates with
its counterpart in another node, and light (simple duplex),
when only one pair of processors communicates without
competition (these results are shown as ranges).

The communication-to-computation speed ratios are also
presented as “invariant” characteristics of compared parallel
systems.

Table 4 and Fig. 7 present the parallelization efficiency
results for 2 problems: of the fixed size (70 MB total), and
the scalable one (70 MB per processor). The size of the
biggest 16-processor scalable problem exceeds 1 GB (grid
256 x 256 x 184).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Table 3. Characteristics of the analyzed par-
allel computers.

parallel CPUY CPU | theor.[comm.| ratio
platform and per |cache| vs. real| duplex | MB/s to
interconnect node| size MFLOPS MB/s | MFLOPS
IBM SP3-375 16 | 8m 1500 [80-175]0.27-0.59
Colony switch 297 - -
Alpha 21264-667 > | am 1333 90 0.26
Myrinet 347 | 41-73 |10.12-0.20
Intel PIII-550 » |s19K 550 39 0.46
2xEthernet100 84.5 |5.8-10]0.07-0.12
AMD Athlon-MP 5 156K 3050 | 120 0.39
Ethernet1000 308 | 28-35(0.09-0.11
AMD Athlon-MP 5 |256K 3050 | 120 0.39
Dolphin/SCI 308 |88-105[0.29-0.34

Table 4. Parallelization efficiency (%) for the
fixed and scalable problems.

parallel fixed size problem scalable problem

platform 2] 4] 8 16| 2]4]8]16

IBM 98.9198.0/105.5/102.3//96.2|86.4/79.6|71.5
P3375 9/98. . 3196.2/86.4|79.6|71.

Alpha 91.8/82.4] 83.5 | 75.2 (190.5/82.3(82.2|71.8
cluster

Intel 89.0(82.0(78.6 | 66.4 ||90.8/86.2|78.8|74.5
cluster

AMD o6 9183.5| 88.2 | 73.2 [|95.2(88.2(80.4]70.8
cluster Gig

AMD

usior SC1|98:0[89:6[104.0 — 1196.390.3(85.9| -

For the fixed size problem, it can be seen that the
IBM SP3 and AMD-SCI machines demonstrate better effi-
ciency than other clusters. The main reason of it is much
higher communication-to-computation speed ratio. Also
these two machines demonstrate a superlinear speed-up
for 8 and more processors due to cache effects. On the
IBM SP3, the size of L2-cache is big enough to fully con-
tain most necessary arrays of a subdomain. In this case the
computational speed increases sharply, compensating (fully
or partially) the parallelization overhead. On the AMD-SCI,
its fast 256 KB L2-cache becomes sufficient to hold several
2D-planes of data arrays that are processed simultaneously,
with the similar performance effect.

The remaining 3 clusters (Alpha, Intel and AMD-
Gigabit) demonstrate very close behaviour, because their
communication-to-computation speed ratios are not much
different from each other. For example, the higher ratio of

1008

80

T L)

R e [e e e
IBM SP3-375 --<¢-- IBM SP3-375 --<--
Alpha cluster —6— Alpha cluster —e—

Intel cluster --43--- Intel cluster ---3---
~ AMD cluster Gig ----" 20 [~ AMD cluster Gig -->¢--"]

AMD cluster SCI —+— AMD cluster SCI —+—

I S PO S N N
12 4 8 16 1 2 4 8 16

Figure 7. Efficiency (%) for the fixed (left) and
scalable (right) problems.

inter-node transfers of the Alpha cluster is compensated by
the better intra-node transfers of its competitors. For all
three machines, we also see some positive cache effects on
8-processor configurations.

For the scalable problem, the correlation of the
parallelization efficiency with the communication-to-
computation speed ratio is less clear, partly because the big-
ger problem is less sensitive to this ratio. Besides, there may
be additional individual reasons for every platform. For ex-
ample, the Athlon and Alpha clusters suffer from differ-
ences in processor node’s speeds exceeding 2—-3 % some-
times. In this case the overall performance is limited by the
speed of the slowest processor. The IBM SP3 is supposed
to suffer from multi-user environment when user processes
may migrate between SMP-nodes during their runs.

Note that the parallelization involves some algorithmic
overhead due to the increased computational work in the
solution of 3-diagonal systems. Also there is a disbalance
between the innermost and outermost subdomains. For this
reason, measured performance results must be compared
with some monotonically decreasing line representing par-
allel efficiency of the infinitely fast communications.

Measurements of the AMD-SCI performance will be
continued in the future, when 8 SMP nodes with 16 pro-
cessors become available.

The presented comparison shows that modern inexpen-
sive PC clusters built upon Gigabit Ethernet or, better, upon
Dolphin/SCI interface demonstrate very competitive results
both in parallelization efficiency and absolute performance.
For this reason they can be considered as a promising and
economical solution for coming years.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

6. Conclusion

We illustrate in this paper that a parallel CFD code can be
successfully used as an adequate and sensitive measurement
tool for evaluating parallel computers. This code can be
easily ported to any platform with standard software tools
(Fortran compiler, MPI or another appropriate library, etc).
The code was used for choosing the best parallel platform
for a cluster at L3M, Marseille (France).

The presented method allows to parallelize 3D CFD
codes for simulation of incompressible flows in regular do-
mains. Despite the partially implicit nature of such codes
and relatively low communication speed of modern comput-
ers’ interconnects, this method ensures a reasonable level
of parallelization efficiency. The method follows SPMD
model and can be easily adapted to different architectures.

The comparative performance analysis of several com-
puters performed with the new code reveals their important
characteristics and illustrates the reasonable correlation be-
tween communication speed and parallelization efficiency.

7. Acknowledgements

This work was partially supported by the program
”Réseau de coopération universitaire et scientifique Franco-
Germano-Russe” of the French Ministry of National Edu-
cation, and by the Russian Foundation for Basic Research
(grants RFBR-01-01-00745 and RFBR-02-01-00210).

Concerning the performance evaluation on the AMD bi-
Athlon Cluster at L3M, the authors wish to acknowledge the
firm Linagora SA (France), integrator of the L3M cluster,
who granted a part of this investigation with their partners
AMD, Dolphin and Scali.

The access to other parallel computers was given by
CINES, France, and JSCC (Joint SuperComputer Center),
Russia.

References

[1] J. Henning, ”SPEC CPU2000: Measuring CPU per-
formance in the new Millennium”, Computer, July
2000, pp. 28-35.

[2] ”Numerical simulation of 3-D incompressible un-
steady viscous laminar flows: a GAMM workshop”
(ed. by M. Deville et al.), Notes on Numerical Fluid
Mechanics, vol. 36, Vieweg, 1992.

[3] F. Marino and E. Swartzlander, ”Parallel implementa-
tion of multidimensional transforms without interpro-
cessor communication”, IEEE Transactions on Com-
puters, vol. 48, no. 9, pp. 951-961, 1999.

[4] L. Borges and P. Daripa, A fast parallel algorithm for
the Poisson equation on a disk”, J. Comput. Phys., vol.
169, pp. 151-192,2001.

[5] O. Bessonov, V. Brailovskaya, V. Polezhaev, and
B. Roux, ’Parallelization of the solution of 3D Navier-
Stokes equations for fluid flow in a cavity with moving
covers”, Lecture Notes in Computer Science, vol. 964,
pp- 385-399, 1995.

[6] C. Temperton, “Direct methods for the solution of
the discrete Poisson equation: some comparisons”,
J. Comput. Phys., vol. 31, pp. 1-20, 1979.

[7] C. Temperton, ”On the FACR(!) algorithm for the dis-
crete Poisson equation”, J. Comput. Phys., vol. 34, pp.
314-329, 1980.

[8] O. Bessonov and B. Roux, "Optimization techniques
and performance analysis for different serial and par-
allel RISC-based computers”, Lecture Notes in Com-
puter Science, vol. 1277, pp. 168—174, 1997.

[9] V. Polezhaev, O. Bessonov, N. Nikitin, and S. Nikitin,
”Convective interaction and instabilities in GaAs
Czochralski model”, J. Crystal Growth, vol. 230, pp.
40-47,2001.

[10] O. Bessonov and V. Polezhaev, ’Mathematical model-
ing of convection in the DACON sensor under condi-

tions of real space flight”, Cosmic Research, vol. 39,
no. 2, pp. 159-166, 2001.

[11] C. Walshaw and S.J. Farr, ”A two-way parallel parti-
tion method for solving tridiagonal systems”, School
of Computer Studies Research Report Series, Report
93.25, University of Leeds, U.K., 1993.

[12] F. Cappello, O. Richard, and D. Etiemble, Perfor-
mance of the NAS benchmarks on a cluster of SMP
PCs using a parallelization of the MPI programs with
OpenMP”, Lecture Notes in Computer Science, vol.
1662, pp. 339-350, 1999.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

