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Abstract

Instability and temperature oscillations in the melt for idealized Czochralski model for typical parameters of
the semiisolating GaAs crystal growth configuration are studied. Critical Gr and Re numbers are determined using
linear stability analysis and direct numerical simulation. The impact of the height of the melt on convection structure
and critical Gr number are studied. Microgravity alternatives for damping of the temperature oscillations are discussed.
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1. Introduction

Fluid flow in the melt for the so-called idealized
or hydrodynamical model of Czochralski growth
has been studied for more than 25 years (see, for
instance, Refs. [1-5] and references cited therein).
The corresponding system of the governing para-
meters is a multiparametrical one even for
unicomponent melt flow containing geometrical
and dynamical parameters for forced and gravity-
driven convection, physical properties, and bound-
ary conditions, which are important for convec-
tion. A problem of fluid flow in this model initiates
the analysis of nonlinear interaction, temperature
oscillations for gravity-driven and rotational low
Prandtl melt flow as a basic fluid dynamics
problem.
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The study, in this paper, is focused on critical
parameters for onset of oscillations induced by forced
and natural gravity-driven convection in axisym-
metric and three-dimensional (3D) cases for a
concrete range of technological configuration related
to the LEC semiisolating GaAs crystal growth and
comparison of the possibilies to eliminate or control
temperature oscillations in the melt.

2. Statement of the parametrical analysis and
overview

The problem formulation and a range of
problem parameters are described in Refs. [4-8].
The geometry of the problem involves a vertical
cylindrical crucible with radius R, filled with a
melt upto a height H (Fig. 1). The crucible can
rotate with a constant angular velocity Q. and it is
in a constant gravitational field with acceleration
g. A crystal of radius Ry is mounted in the center of
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Fig. 1. Scheme of the idealized Czochralski growth.

the upper free surface. The crystal can be rotated
with a constant angular velocity €. It is supposed
that the temperature of the crystal surface T is
constant. The temperature of crucible side wall
and crucible bottom is 7.. The melt surface
between the crystal and crucible wall is assumed
to be shear-free, plane and adiabatic. It is
supposed that the melt is Boussinesq fluid.
Unsteady Navier—Stokes equations in velocities—
pressure formulation and temperature equation
are solved in a cylindrical coordinate system, both
for axisymmetric and 3D cases [4-8]. The set of
non-dimensional governing parameters of the
problem consists of two geometrical parameters,
H/R. and R;/R., two Reynolds numbers Re; =
QSRCZ/V and Re. = QCRCZ/V, Grashof number
Gr=gB(T.—Ts)R.*/v*, Prandtl number Pr = v/x,
and parameters 7y, y, characterizing the type of
boundary and initial conditions. Therefore, a
typical characteristic (for instance, an amplitude
of the temperature oscillations, a value of macro-
inhomogeneity, etc.) of the fluid flow/transport in
the melt for Czochralski model may be written as
follows:

A = f(Re., Res, H/R., Rs/R., Gr, Pr, y, 7). (1)

The problem parameters are extremely different
for most of the published works because a number
of peculiarities exists for crystal growth technolo-
gies. For instance, typical-semiconductor (Pr<1)
configurations use counterrotation for crystal and
crucible. However, for GaAs configuration, bot-

tom heating [8—13], and for silicon, bottom cooling
[14] are used. In case of oxides (Pr> 1), adiabatic
bottom and rotation of crystal are used [3]. There
are different configurations in cases where special
liquids are used for modeling, for instance, water
(Pr =7) [15,16], alcohol (Pr = 15) [16], silicon oil
(Pr = 890) [17], NaCl-CaCl, melt (Pr = 0.5) [18].
Wheeler [19] proposed as a benchmark an
axisymmetric model with parameters H/R. =
1.0, Rs/R. = 0.4,Pr = 0.05, linear temperature dis-
tribution along the melt surface and different
Reg, Re. and Gr. (see the results of calculations in
Refs. [20,4,5]). However, this configuration does
not cover the typical range of parameters for the
GaAs configuration.

3. Idealized LEC GaAs crystal growth
configuration

Typical configuration for the LEC was proposed
for systematic research in this paper (see, for
instance, Refs. [8§-13,21,22]). The temperature on
the bottom is the same as on the side wall,
T. = Ty, and the melt surface is supposed to be
shear-free and adiabatic. It should be noted that
thermocapillary phenomena are not taken into
account in this paper because they do not seem to
be an important factor for GaAs LEC technology,
as was discussed in Ref. [10]. The geometrical
parameters are characterized by the values
H=40cm, R,=4.0cm, R.=7.0cm. A dynamical
regime is typical for GaAs growth counterrotation
with faster rotation of the crucible: Q=6rpm,
Q.= — l6rpm. A typical temperature difference
between the crystal and crucible is 30°. The
corresponding non-dimensional parameters are
as follows: H/R.=R;/R,=0.578, Pr=0.07,
Gr=7.8 x 107, Re;=6 x 10°, Re,= — 1.6 x 10,

4. Numerical methods and codes

New tools for modeling on the basis of unsteady
Navier—Stokes equations developed during the last
years represent the following hierarchy.

(1) Common type PC-based system “COMGA”
and computer laboratory on the basis of



42 V.I. Polezhaev et al. | Journal of Crystal Growth 230 (2001) 40-47

Navier—Stokes equations which includes most of
the elementary technologically important heat and
mass transfer processes. Finite difference schemes
in the vorticity/stream-function formulation are
used in this version of the system. The system and
computer laboratory is efficient for the initial stage
of research and education and is used now for
student training. More detailed description is given
in Ref. [6].

(2) Two types of specialized axisymmetric
Czochralski models are developed. The first is
based on a system “COMGA” and is named
“INTEX”. It includes a variation of geometry,
crystal, crucible rotation, gravity-driven and Mar-
angoni convection for fluids with different Prandtl
numbers. More details and benchmark examples
can be found in Refs. [7,8]. This system was used
for parametric analysis presented below in Sec-
tions 5-7. The second type of the axisymmetric
codes has the same formulation and possibilities as
the first one, but is not supplied by so friendly an
interface as the “COMGA” is. This system is used
mainly in special cases, for instance, to calculate a
basic flow for subsequent linear stability analysis.

(3) For direct numerical simulations of 3D
equations for Czochralski model, two numerical
codes are developed. The first one is a spectral/
difference method, which is described in detail in
the paper [4]. The second one is based on a finite-
volume scheme for velocity—pressure formulation.

(4) The code for 3D linear stability analysis of
fluid flow in an idealized Czochralski model [4]
including procedures for the calculation of axi-
symmetric flow and temperature fields, input of
the 3D disturbances and calculation of the 3D
disturbances evolution.

5. Crystal and crucible rotation without thermal
convection

The computer system “INTEX” with 81 x 81
grids on non-uniform mesh is used for this case.
Steady state temperature and flow fields due
to forced convection only (Gr=0, Q;=6rpm,
Q.= — 16rpm) correspond to zero gravity. A
classical Taylor-Praudman-type of flow may be
recognized on the picture of stream function.

Typical diffusion-type isotherms structure may be
recognized in r — z plane. However, 3D stability
analysis shows that forced flow is definitely
unstable. It was shown, using the linear stability
analysis technique, that critical speed rotation of
the crystal in 3D case (€).=7.7rpm. It corre-
sponds to the critical Re;=7.7 x 10°, which is
more than an order less than for an infinite disc.
The reason for this fact is an enclosure of a
crucible. This critical Qg value is higher than the
industrial value 6.0rpm. It confirms that the
crystal rotation is not the reason for instability in
the 3D case. However, the critical value of the
crucible rotation (£2.), is found to be about 1.2 rpm
(Re.= 1.2 x 10%). This value is more than 10 times
lower than the industrial one (16rpm). Direct
numerical simulation on the basis of the 3D model
for Gr=0, Qy=6rpm, Q.= — 16rpm shows an
oscillatory azimuthal flow. Therefore, flow in-
stability in this case must exist even for zero
gravity.

6. Thermal gravity-driven convection

Fig. 2 shows the temporal evolution of the
thermal convection for the basic case obtained by
direct numerical simulation of ground-based con-
vection without rotation (Gr= 7.8 x 107, Q; =
Q. = 0) with the use of the “INTEX” computer
system. A strongly non-uniform mesh with 81 x 81
grids was used in this case.

One can recognize two kinds of thermal
convection mechanisms in the crucible: (a) local
thermals due to the instantaneous crystal cooling
from above and (b) global circulation due to the
side heating. However, local mechanism in the
form of thermals dominates in this case only at the
initial stage (till about 10-15s). Unsteady thermals
structure may be one of the possible and important
mechanisms of thermal convection. It was ob-
served in water on the suddenly heated bottom
[23]. Realization of thermals by computer system
“COMGA” was done in Ref. [6]. A similar
structure of thermals, penetrated from above the
cooling water surface was reported in Ref. [24]. As
reported in Ref. [25], unsteady thermals structure
is one of the possible and important mechanisms
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Fig. 2. Evolution of the thermal convection in axisymmetric case (Gr=7.8 x 10, &, = Q. = 0). Values on the right show dimensional

time in seconds.

of thermal convection in oxide melt which is
characterized by the high Pr number, but not in
the semiconductor melt. This conclusion corre-
sponds to the long-term behavior of thermal
convection shown in Fig. 2, where global type of
convection from the heating side dominates. It
should be noted that this situation is typical only
for the low Pr number melt. High Pr number
experiments show regular oscillations induced by
thermals near above the cooling front, and it
corresponds to calculations reported in Ref. [25].
Long-term regime in Fig. 2 is a steady state one for
axisymmetric case in accordance with the estima-
tion of the critical Gr number for this case. Using
parametrical calculations on the basis of axisym-
metric model with variation of the Grashof
number, critical Gr number for onset of the
oscillations was calculated as Gr=1.5x 10%.
Therefore, convective regime without rotation in
the axisymmetric case should be steady for the
basic level H=4cm.

However, thermal convection strongly depends
on the melt level. Fig.3 shows the calculation
of convection for different heights of the melt
level. The dashed line here shows critical Grashof
numbers for the axisymmetric case which is
more stable. For instance, the critical Grashof
number for 3D convection in the configuration
discussed here for H=4cm was found to be
2.5x 10° which is significantly smaller than
Gr.=1.5x 10® for the axisymmetric case. There-
fore, in the 3D case, the oscillatory regime must be
realized instead of the steady state one in the
axisymmetric case.

For the control of temperature oscillations in
the melt, the change of the leading convective
mechanism depending on the height is very
important. Due to the bottom heating Rayleigh—
Bernard mechanism of instability in the form of
convective cells dominates for small H (area a in
Fig. 3). This mechanism has a local nature and
produces a transport in a direction from front to
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Fig. 3. (a,b) Critical Grashof numbers for the onset of oscillations, temperature and flow patterns for thermal convection (25 =
Q. = 0) in axisymmetric and 3D cases for different heights of the melt. (c) 3D direct simulations of temperature and flow patterns of

thermal convection (Gr=2.86 x 10, Q= Q. = 0).

bottom. However, a side heating mechanism of
convection is dominated for H>4cm (area b in
Fig. 3). This type of convection has a global
feature and produces a transport from the crucible
wall to the crystal. A very interesting and new
result is interaction between these two types of
convection which leads to significant destabiliza-

tion in the region between a and b in Fig.3
(H~3cm). We do not have enough space for
discussing other interesting and complex effects of
convection for a crucible with different geometry,
for instance, for small height of the melt
H <0.5cm, where two-dimensional (2D) and 3D
cases are very different (Fig. 3, region a).
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Fig. 4. Interaction of gravity-driven and forced convection: evolution of the thermal convection with crystal and crucible rotation in

axisymmetric case (Gr=7.8 x 107, Q;=6rpm, Q.= — 16 rpm).

Fig. 4 shows one of the results of direct 3D
simulations for basic height H =4cm (isotherms in
azimuthal plane for small supercritical value of
Gr=2.85x10® for level z=0.75). Finite difference
control volume scheme and uniform mesh with
70 x 64 x 64 grids was used for this case. The results
of direct 3D simulations and stability analysis are
very similar. Note that this structure named a
“spoke type” structure, was observed in silicone
melt in Ref. [26]. 3D calculation for low gravity
9/9,=0.01, which corresponds to Gr=7.8 x 10°,
shows steady state convection. It also confirms the
conclusions of the linear stability analysis.

7. Coupling of the thermal convection and
crystal/crucible rotation

Temporal evolution of the thermal convection
with crystal and crucible rotation in axisymmetric

case was demonstrated for 2D case using
“INTEX” computer system. Following [9], an
example with basic parameters: height H=4cm,
Gr=7.8x 10", Q,=6rpm, Q.= — 161pm, is typi-
cal for the growth of GaAs monocrystals. In this
case, non-uniform mesh with 81 x 81 grids was
used. One can see from Fig. 4 that thermals
structure may be recognized in the early stage of
the process, similar to the early stage (till about 7 s)
for the case of thermal convection (Fig.?2).
However, transient and long-term processes of
coupling are quite different.

Oscillatory mechanism which may be recognized
as W-type isotherms structure is realized for long-
term duration in this figure. A qualitatively,
similar instability has been discussed in the
literature ([27] and references cited therein). How-
ever, the role of configuration and concrete
parameters is very important. A significant feature
of the flow field, in this case, in comparison with
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Fig. 5. Three-dimensional thermal convection with crystal and crucible rotation under reduced gravity (Gr=7.8 x 10°, Q,=6rpm,

Q.= — 16rpm).

long-term convection structure in Fig. 2 is the
strong disturbances due to interaction with the
forced type of convection. A parametrical analysis
has been performed with the goal of investigating a
mechanism related to the W-type of instability. A
special run with thermal convection and only
crystal rotation (Gr=7.8 x 107, Q;=6 rpm, Q. =0)
shows small temperature oscillations. However,
for the case of thermal convection and only
crucible rotation (Gr="17.8 x 107, Q=0,
Q.= — 16rpm), it is definitely shown that the
main reason for the instability is a coupling
between thermal convection and crucible rotation
due to the high speed of crucible rotation. Note
that the coupling effect strongly depends on the
melt height and thermal regime of the bottom. For
instance, paper [l14] reports stabilization of a
coupling flow for silicon growth configuration
which is not confirmed for our configuration in 3D
case. The rotation of the crucible for damping this
type of the oscillations using 2D model was
determined here to be about 1.5rpm, which is
close to the above mentioned critical value 1.2 rpm
for 3D instability of crucible rotation. Note that
the calculation which was done for basic case
shows a developed chaotic regime.

Special calculations were carried out with the
goal of investigating convection regime in low
gravity with Gr number reduced to 7.8 x 10° in the
case with rotation crystal and crucible Qs =6rpm,
Q.= — l6rpm. Note that 2D coupling flow is
close to a steady state regime. The result of
calculations of 3D coupling flow is shown in
Fig. 5. Spectral-finite difference scheme was used
in this case with 64 x 64 x 64 grids on uniform
meshes. 3D flow is unsteady in this case. However,
one can see from Fig. 5, that W-type isotherms
structure in r — z plane similar to that in Fig. 4, is
absent. Moreover, temperature structure in r—z
plane is qualitatively similar to the same case, but
without thermal convection. Therefore, a low
gravity with g/g,=10" 2-10 — 3 (with Gr number
reduced to 7.8 x 10°), probably may be enough for
damping the most strongest instability. This result
may be used as one of the possible explanations for
the elimination of striation in microgravity.

8. Conclusions

As a result of modeling fluid flow in a crucible
of idealized Czochralski method, critical speed
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rotation of the crystal in 3D case for a given
configuration is found to be (£).=7.7rpm
(Res=7.7 x 10°) and crucible rotation (), to be
1.2rpm (Re.=1.2 x 10%).

Three different possible mechanisms of gravity-
driven convection in crucible are shown: side
heating, cooling from above near the crystal front,
and bottom heating. Critical Grashof number for the
onset of the temperature oscillations due to con-
vective instability in a given configuration for basic
height is found to be 1.5 x 10® for axisymmetric and
2.5% 10° for 3D case. Dependency of these critical
values on the height and boundary between different
mechanisms of thermal gravity-driven convection
are found. Coupling of convection and crucible
rotation is the most strongest reason for instability
which exists even in axisymmetric case.

The results of the paper give an estimate of the
quantitative comparison between the effect of low
gravity and low crucible rotation or symmetriza-
tion of the temperature/flow fields as important
low energetic control actions which may be
alternatives to expensive microgravity action for
damping of the temperature oscillations in the melt
with a goal to eliminate striations in semiisolating
GaAs crystals.
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