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Abstract. This paper presents the results of numerical modeling by the finite element method 
(FEM) of convective heat and mass transfer during the growth of single crystals by the vertical 
Bridgman method with a submerged heater. Numerical calculations were performed using the 
implicit matrixless finite element method based on the iterative process of conjugate gradients 
and significantly reducing the requirements for RAM and computer speed. The effects of 
gravity, rotation, crystallization rate and vibration on heat and mass transfer in the melt, the 
geometry of the crystallization front, and the thickness of the boundary layers were studied. It 
is shown that the above effects can be effectively used to control the distribution of impurities 
in crystals grown by the vertical Bridgman method. 

1. Introduction
The technologies for growing perfect single crystals are faced with the task of improving their
uniformity and increasing productivity that is, increasing the crystal growth rate [1-3]. To solve these
problems, it is necessary to organize the convective mixing of the melt in such a way that the
following conditions are met: 1) uniform and quick removal of heat from the growing crystal, 2)
maintaining a flat form of the crystallization front and 3) uniform impurity distribution along the
radius of the crystal. The heat and mass transfer during crystal growth can be controlled using the
optimal selection of geometry, thermal parameters, growth rate, as well as various physical and
mechanical controlled influences (rotation, vibration, magnetic and gravitational fields) [3-8]. The
authors of [3] give an overview of the results of crystal growth under rotational and vibrational
influences on the melt flow. In [4-8], the results of mathematical modeling of the effects of gravity,
rotational and vibrational effects on heat and mass transfer during crystal growth are presented.
Reviews of the results of mathematical modeling of heat and mass transfer during crystal growth and
the prospects for the development of these works are given in [9-10]. In [11], heat and mass transfer
was simulated numerically for the vertical Bridgman method with submerged heater. The submerged
heater separates the region of melt near growing crystal and allows control of convective mixing of
dopant near the crystallization front. A review of Bridgman method with submerged heater is
presented in [12]. In [13] the effect of submerged heater rotation on the shape of crystallization front
of 3NaNO crystal was studied numerically and experimentally. 

This paper presents the results of finite element modeling of convective heat and mass transfer in 
single crystal growth by vertical Bridgman method with submerged heater. The effects of gravity, 
rotation, crystallization rate and vibration on heat and mass transfer in melt, on thickness of boundary 
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layers and on distribution of dopant in crystals are studied. The details of numerical methods and 
models used in this work can be found in [14-15]. 

2. Mathematical model
The axisymmetric unsteady melt flow is described by the Navier equations for an incompressible fluid
in the Boussinesq approximation. The incompressibility condition, the equations of motion in
projections onto the radial, circumferential and axial directions, the heat equation and the convection-
diffusion equation of the impurity are written below:

0u u w
r r z
 

  
 
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where d / dt / t u / r w / z          is material time derivative, u ,v ,w  are radial, circumferential 
and axial velocities, T C,k ,k  are dynamic viscosity, heat conduction and diffusion coefficients,   is 
the buoyancy coefficient, 0T  is a reference temperature, 0  is a reference density, g  is the gravity 
acceleration along z . 
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Figure 1. Schematic of Bridgman method with submerged heater (a) and solution domain (b). 

 
The solution domain is shown in Figure 1, where R  =3.36cm is the radius of crucible,  = δ0.1cm

is the size of the gap 0 8h . cm , SHS  is the region of the submerged heater. The crystallization front 
(5) is considered flat and the crystal growth rate is constant, is the melting temperature of germanium,
is the concentration of gallium impurity. On solid walls, adhesion conditions is specified, CR  is 

b 

c 
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crucible rotation speed (including crystal and vertical crucible walls), b  is the rotation speed of the 
submerged heater. The boundary conditions are accepted as: 

0 0 0 0 0 0 0r , z H : u , v , w / r , T / r , C / r                  (7) 

00 0 0 0 1s m C sr R, z : u , v , w W , T T , k C / z W C( k )                (8) 

0 0 0 0 0 0r R, z h : u , v , w , T / r , C / r                 (9) 

0 0 0 0CRr R, h z H : u , v , w , T T ( z ), C / r              (10) 

0 0 0 0SH SH( r ,z ) S : u , v , w , T T ( r ,z ,t ), C / n            (11) 

020 0 0 0 Zr R, z H : u , v / z , w / z , T T , C C                 (12) 

Initial conditions are 

010 0 0 0 0 s mt , r R, z h : u , v , w W , T T , C C              (13) 

020 0 0 0 s mt , r R, h z H : u , v , w W , T T , C C              (14) 

At the crystallization front, the condition of mass transfer of the third kind (8) is set taking into 
account the crystallization rate sW  and with the equilibrium extrusion coefficient of impurity 0k . 
Vibrations were specified as a harmonic function of time for movement or speed on a submerged 
vibrator. The task is characterized by the following similarity numbers: Reynolds number associated 
with the crystal growth rate s SRe W R /  ; vibrational Reynolds number vibrRe A R /   , where A is 
the amplitude, 2 f   is circular frequency of translator's vibrations; Prandtl number p TPr c / k ; 

Grashof number 3 2 2
0g TRGr /     (or Rayleigh number Ra Gr Pr  ), where T  is the 

temperature range. 

3.  Numerical method 
Initial boundary value problem for Navier-Stokes equations (1) - (14) is solved by implicit matrix-free 
scheme using piecewise linear approximation of the solution on triangular finite elements (detailed 
description is given in [14]). For example consider typical convection-diffusion initial boundary value 
problem for unknown function A( x,t ) : 

0  t , x V :   A u A ( k A) F
t


    


        (15) 

00   A=At , x V : ( x )    

0   A *t , x S : A( x,t ) A ( x,t )     

0   : A *t , x S \ S k A P ( x,t )      

where values with stars are predefined and  AS V , S S   , the following variational implicit scheme 
was used (n is time layer number, n=0,1,2…): 
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Coefficient 0nk   represents corrected viscosity coefficient. It is decreased according to 

exponential fitting technique [16] (in simplest manner): 2n n n nk k / ( k u u t )    . In order to account 
incompressibility the penalty functions method is used: pressure is calculated by formula 

2
0p (max{|u |}) ( u ) t     , where u is the velocity, 10   is dimensionless penalty coefficient, 

t is a time step. Formally, implicit scheme is unconditionally stable. But in order to provide required 
accuracy of the unsteady solution time step is restricted by usual Courant condition: 

nt min(| x | / | u |)   . At each time step the algebraic system of equations was solved iteratively by 
matrix-free conjugate gradient method. The implementation requires 4N real numbers of operative 
memory (N is a number of unknown nodal values { 1

1
n N
i i{ A }

 }) and the machine precision of solution 
is reached after 1 2/N  iterations. To decrease the condition number of algebraic problem the diagonal 
approximation of the equation matrix was used as preconditioner (scaling of unknowns). The 
calculation of the residuals of the algebraic equations at each iteration exactly coincides with the 
calculation of each time step in explicit two-layer finite-element (or finite difference) schemes. So the 
amount of computations required for finding the solution is proportional to 3 2/N . Detailed description 
of algorithm is given in [15]. 

The characteristics of the time-averaged vibrational flows, for example, of a certain value   during 
the solution, were determined by the formula:  

0

1 t

average dt
t

   . 

An additional restriction on the time step to ensure accuracy was determined by the frequency of 
vibrations. The time step was chosen so that for each period of vibrations of the vibrator we used from 
50 to 400 time steps. The results for averaged vibrational flows correspond to times when the averaged 
flow becomes quasi-stationary. 

4.  The effect of rotation on the distribution of impurities in a crystal 
When single crystals are grown by the vertical Bridgman method, crucible rotation is used to provide 
symmetry the temperature and impurity distribution [4,7]. Figure 2 shows the isolines of the stream 
function for two cases: without rotation (Figure 2a) and with rotation (Figure 2b) of the submerged 
heater at a speed 0 3117b . rps  . It is seen that the rotation of the submerged heater significantly 
affects the flow of the germanium melt. 

 
a)     b) 

Figure 2. Isolines of flow function a) without rotation and b) with rotation of crucible at a speed 
0 3117b . rps  . 



Applied Mathematics, Computational Science and Mechanics: Current Problems

IOP Conf. Series: Journal of Physics: Conf. Series 1479 (2020) 012029

IOP Publishing

doi:10.1088/1742-6596/1479/1/012029

5

 
 
 
 
 
 

Effect of rotation of crucible and submerged heater on distribution of dopant in the crystal is 
illustrated by isolines of dopant in Figures 3-4. 
 

 
       a)       b)              c)        d) 

Figure 3. Dopant distribution in the crystal. Without rotation: (a) – terrestrial, (b) – microgravity. 
With rotation of heater ( 0 05b . rps  ): (c) – terrestrial, (d) – microgravity conditions.  

 
       a)       b)              c)        d) 

Figure 4. Dopant distribution in the crystal. With rotation of heater and crucible: (a) - 0.05b rps   
and 0.3117b rps  ; (b) - 0.05b rps  and 0.3117b rps  . With oscillating rotation of the heater 

with a frequency of 0.68Hz for two points in time: (c) -  t=579 sec and (d) – 816 sec. 
 

The simulation results showed that under terrestrial conditions, the most uniform distribution of 
impurities in the crystal is obtained by counter rotating the crucible and the submerged heater 
(Figure 4b). 

The effect of harmonic oscillatory rotation of a submerged heater was calculated with a frequency 
of 0.68Hz. This effect is expressed in the appearance of additional wave-like inhomogeneities in the 
distribution of impurities in the melt and, as a consequence, in the crystal (Figure 4d). 

5.  The effect of crystallization rate on the distribution of impurities 
The influence of gravity and directed crystallization rate on the distribution of impurities in the melt 
for vertical Bridgman method with submerged heater was first studied in works [11-13] by the finite 
difference method. We repeated these calculations by the finite element method (see Figure 5) and 
obtained excellent agreement with the mentioned results. The results in Figures. 6-7 show the effect of 
gravity acceleration and crystal growth rate on the distribution of gallium (Ga) in a germanium crystal 
(Ge) for three cases of growth rate: 0.36sW rps , 1.8sW rps , 3.6sW rps  and two cases of gravity 
acceleration 2

0 9.8 / secg g m  and 00.001g g . 
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a)      b)    c) 

 
d)     e)    f) 

Figure 5. Finite element results for concentration of Ga in the melt Ge (in concord with original [11-
13]): upper row for terrestrial gravity 0g g , lower row for microgravity 00 001g . g . Growth rate: 

0 36sW . cm / h  for (a) and (d), 1 8sW . cm / h  for (b) and (e), 3 6sW . cm / h  for (c) and (f). 
Additionally, for each of the presented variants, impurity distributions in crystals were obtained 

(Figures 6-9). In the mathematical model, it was assumed that the velocity of the planar crystallization 
front remains constant during a single crystal growth process. The distribution of the impurity in the 
crystal is calculated by using the obtained history of the impurity at the crystallization front taking into 
account the crystallization rate sW  and with the equilibrium extrusion coefficient of impurity 

0 0 087k . . 

 
a)           b)     c) 

Figure 6. Isolines of concentration of Ga in the melt Ge in terrestrial conditions (g = go) for various 
growth rate: 0 36sW . cm / h  – (a), 1 8. cm / h  – (b), 3 6. cm / h  – (c). 
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 a)         b)    c) 

Figure 7. Distribution of concentration Ga in the crystal Ge along lines r=const for various growth 
rate: 0 36sW . cm / h  – (a), 1 8. cm / h  – (b), 3 6. cm / h  – (c). 

 

 
a)           b)     c) 

Figure 8. Isolines of concentration of Ga in the melt Ge in space conditions (g = 0.001go) for various 
growth rate: 0 36sW . cm / h  – (a), 1 8. cm / h  – (b), 3 6. cm / h  – (c). 

 

 
a)           b)     c) 

Figure 9. Distribution of concentration of Ga in the melt Ge in microgravity conditions (g = 0.001go) 
for various growth rate: 0 36sW . cm / h  – (a), 1 8. cm / h  – (b), 3 6. cm / h  – (c). 

 

The simulation results showed that the nature of the distribution of the impurity under terrestrial 
conditions and during microgravity is significantly different, and the most uniform distribution of the 
impurity in the crystal is obtained at a crystallization rate of 1 8sW . cm / h . 
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6.  Effect of vibrations 
Vibrations were set in the form of a harmonic function of time for speed at boundary of crucible or 
submerged heater (used as vibrators) in accordance with the law: 2z Acos( ft )   with frequency f and 
small amplitude A. The crystal growth rate was constant 0 3sW . cm / h . The vibration amplitudes 
were set in the range from 0 to 400 μm, and the frequencies were in the range from 0 to 100 Hz. 
Figure 10a shows isotherms in the melt (Pr = 5.43) (without vibrations in the right parts of the figures, 

with vibrations in the left parts ( 200vibrRe  ). The isolines of the stream function in the absence of 
vibrations of the submerged vibrator (Figure 10b) and with vibrations (Figure 10c). 
 

 
      а)                                б)                                в)  

Figure 10. Bridgman method with submerged vibrator 3NaNO : a) isotherms in the melt without 
vibrations (right part) and with vibration (left part); Isolines of stream function: b) without vibrations 

(f=0); c) and with vibrations (A = 0.1mm, f = 30Hz). 

7.  Conclusion 
The simulation results showed that rotations in terrestrial and microgravity conditions can homogenize 
the distribution of the impurity in the crystal. This can be a way to control the distribution of the 
impurity in the crystal. Rotations under zero gravity conditions can be a necessary alternative to 
natural convection and intensification of heat removal from a crystal. For optimal distribution of 
impurities in the crystal, the rotational speeds should be a function of time. Accelerated slow rotation 
of the submerged heater is most effective for mixing impurities in the melt. Under terrestrial 
conditions, the most uniform distribution of impurities in the crystal is obtained by counter-rotation of 
the crucible and the submerged heater. The most uniform distribution of impurities in the crystal is 
obtained at a crystallization rate of 1 8sW . cm / h . A decrease in the thicknesses of the temperature 
boundary layers under vibration exposure is shown. The results of numerical simulations showed that 
it is possible to obtain a flatter crystallization front by vibrational action, which is important when 
growing single crystals. Rotations along with vibration exposure can be a simple means of control 
when growing single crystals by the vertical Bridgman method. 
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