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The paper describes an algorithm for solving the Stefan problem by the finite ele-
ment method for modeling crystallization processes by the Bridgman method with
an immersed heater-vibrator.
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1. Introduction

This paper presents the results of numerical modeling by the finite element method of
convective heat and mass transfer during the growth of single crystals by the vertical Bridgman
method with a submerged heater. Numerical calculations were performed using the implicit
matrixless finite element method based on the iterative process of conjugate gradients and sig-
nificantly reducing the requirements for RAM and computer speed. The effects of gravity, ro-
tation, crystallization rate and vibration on heat and mass transfer in the melt, the geometry of
the crystallization front, and the thickness of the boundary layers were studied. It is shown that
the above effects can be effectively used to control the distribution of impurities in crystals
grown by the vertical Bridgman method.

2. Statement of the problem

The melt flow is described by the Navier-Stokes equations for an incompressible fluid in
the Boussinesq approximation:

V-u=0

pdu/dt+Vp = V~(pOVVU)—,Oogﬂ(T -Tode,
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G, AT /dt =V (k, VT)

dC/dt=V-(DVC)

where traditional notation is used. The problems were considered under conditions of axial
symmetry. Therefore, it is convenient to write the boundary conditions in a cylindrical coordi-
nate system r,60,z, then u,v,w are radial, circumferential and axial velocity projections,

1, k; k. are dynamic viscosity, heat conduction and diffusion coefficients, B is the buoyancy
coefficient, T, is a reference temperature, p, is a reference density, g is the gravity accelera-
tion along z. The state of the growing crystal is subject to the following relations: u =0,
w=0, v=Qur, p,c,dT/dt=V-(k;VT)

The calculation domain is shown in Fig. 1 where R=3.36sm - crucible radius,
6=0.1sm - the size of the gap (3), #=0.8sm, S, - area of immersed heater (1).

T, =937°C - melting point germanium - concentration of gallium impurity. On solid walls,
adhesion conditions are specified, Q ., - crucible rotation speed (bottom - crystal (5) and ver-
tical crucible walls), Q, - rotation speed of the immersed heater (1).

The boundary conditions were adopted as follows:
1) On the axis of symmetry:

r=0, 0<z<H :u=0, v=0, ow/or=0, dT/or=0, oC/or=0
2) On the wall of the crucible:

r=R, 0<z<h : u=0, v=0, w=0, dT/or=0, 6C/or=0
r=R, h<z<H : u=0, v=0, w=0, T=T(z), 0C/or=0
3) At the crystal boundary:
r=R:u=0, v=0, w=0, k0T /or=q(z,t), 8C/or=0
4) Based on the crystal:
z=0:u=0,v=0, w=0, T=T, C=C,
5) At the upper boundary:
z=Z:0uloz=0, ov/oz=0, ow/oz=0, dT/oz=0, C=C,
6) at the melt-crystal interface z = n(r,t) Stefan conditions were set:

z=n(r,t): (T)s =(T), =T, A+a(C),)
()s = (), =(W)s =(w),_ =0
(V)s = (v), =27Qr u,AH = (k,aT /&n), — (k3T /n),
u,(C) (-k.)=(DaC/én),

(C)s =k.(C),
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where u, - rate of propagation of the crystallization front, z =7(r,t), AH - latent heat of

crystallization absorbed / released at the front. In the above formulas, the indices S and L note
the solid and liquid phases, respectively, ¢, - coefficient of dependence of the hardening / melt-

ing temperature on the concentration of impurities in the melt, k.- coefficient of equilibrium
distribution (rejection) of the impurity. The initial conditions were:

t=0:u=0, v=0, w=0, T=T'(r,z), C=C(r,2)

t=0: n(r,0)=z,, T'(r,z,)=T,C'(r,2,)
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Fig. 1. Schematic of Bridgman method with submerged heater (a) and solution domain (b).

At the crystallization front, the condition of mass transfer of the third kind (8) is set tak-
ing into account the crystallization rate W, and with the equilibrium extrusion coefficient of

impurity k., z,k; K. are dynamic viscosity, heat conduction and diffusion coefficients, B is the
buoyancy coefficient, T, is a reference temperature, p, is a reference density, g is the gravity
acceleration along. Vibrations were specified as a harmonic function of time for movement or

speed on a submerged vibrator. The task is characterized by the following similarity numbers:
Reynolds number associated with the crystal growth rate Re, =W R/ v ; vibrational Reynolds

number Re, = AwR/v, where A is the amplitude, o =2=nf is circular frequency of transla-

vibr
tor's vibrations; Prandtl number Pr=yuc, / k;; Grashof number Gr = gBATR’p? / u? (or Ray-
leigh number Ra=Gr -Pr), where AT is the temperature range, c is the heat capacity.

2. Solution Method

The solution was made according to the explicit-implicit scheme of the matrixless finite
element method [1] using a moving finite element mesh. The mobility of the grid nodes is due
to the variable geometry of the solution region due to the motion of the melt-crystal interface.
The new positions of the nodes of the moving mesh were calculated by the model of elastic
networks [1], supporting the approximate equality of the volumes of the mesh cells. The grid
nodes belonging to the moving boundary between the melt and the growing crystal moved in
accordance with Stefan's conditions. Since the integration of time equations is implicit in diffu-
sion terms, it is stable under the usual Courant condition for convection velocity

At"< mgn (h /max(| u —w] |,1e7%)), where h] - the size of the neighborhood of the node Kk,
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values u and w are velocities of the material and coordinate media. The motion of the inter-
phase boundaries is calculated by using the economical Samarsky-Moiseenko pass-through
method [2]. The position of the border was determined from the condition

d(r,z,t)=T(r,z,t)-T, —,C(r,z,t) =0

The heat generation / absorption during the phase transition was taken into account by
the equation

P06, dT /dt =V - (k, VT )—AHS(®)dT / dt

The delta function was approximated by the expression
6(D)=H(@-| (D), |/AT,))/ (2.0AT,). The verification of the algorithms was done by calculating

the well-known test problems of Val Davis [3] and Wheeler [4] on the melt flow in the Czo-
chralski method. An unstructured moving grid was used to track the movement of the crystal —
melt boundary. Grid nodes are numbered(r; ,z ,i=1,...,n), the numbers of nodes forming
three-node internal cells are determined E(i, j) (i=1...,n,, j=12,3) and two-node boundary
cells G(i, j) (i=1..,n,, j=12). The first index of information arrays E(i, j) u G(i, j) cor-
responds to the cell number, the second to the node number in the cell.

Generalized solution of the problem is determined by the variational equations of the
Bubnov-Galerkin method, that are derived in a known manner from the original differential
equations. Each moving grid node placed to a central position relative to its neighbors. The

grid nodes belonging to the moving interface boundaries moved in accordance with Stefan's
conditions. To monotonize the artificial viscosity was used:

vl =v+0.5((U" —ug)® + (W' —wj)?) *At"
D = D+0.5((u" —ul)? + (W' —w})?) * At"

kD =k +0.5((u" —ul)? + (W' —w))?) *At"

Auxiliary systems of algebraic equations for the nodal values of the desired functions
were solved by the matrixless conjugate gradient method with preconditioning by using the di-
agonal approximation of the stiffness matrix (see [1]). Since the time difference scheme is im-
plicit only for diffusion terms and uses physical processes splitting, it is stable under usual
Courant restriction for time step. To calculate the motion of interphase boundaries, the A A.
Samarsky method of through counting was used [2]. In the numerical implementation, the del-
ta function was approximated by the expression 5(®)=H@1—| (D), |/AT,))/ (2.0AT,,).

3. The calculation results

Figure 2 shows the simulation results of the hydrodynamics of the melt and heat transfer
during the growth of gallium arsenide single crystals by the vertical Bridgman method with an
immersed vibrator. The computational domain is shown in Figure 2a. The influence of vibra-
tions on the shape of the crystallization front of NaNO3 are shown in Figures 2b, and 2c. Vi-
brations allow us to make the shape of the crystallization front more flat It was assumed that
the immersed vibrator or crystal oscillates according to the law: with a frequency f and a small
amplitude A. The vibration amplitudes were constant with values in the range from
0 to 400 um, and the frequencies were in the range from 0 to 100 Hz.
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Fig. 2. a) Solution area b) Crystallization front without vibrations, c) with vibrations.

4. Conclusions

Comparison of the calculations with the test data showed good accuracy of the described
algorithm for solving the Stefan problem. Using this method, the authors obtained the results
of modeling the hydrodynamics of melt and heat transfer during the growth of gallium arsenide
single crystals by the vertical Bridgman method with rotation.
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