DURABILITY ESTIMATIONS FOR IN-SERVICE TITANIUM COMPRESSOR DISKS Subjected TO MULTIAXIAL CYCLIC LOADS IN LOW- AND VERY-HIGH-CYCLE FATIGUE REGIMES

Burago N.G. ¹, Nikitin I.S. ², Shanyavski A.A. ³, Zhuravlev A.B. ⁴

¹ ⁴ A. Ishlinski Institute for Problems in Mechanics of RAS
² “MATI” - Russian State Technological University
³ State Center for Flights Safety
The Problem: to estimate durability of in-service gas turbine engine (GTE) compressor disks
Zone of fatigue fracture nucleation
Finite element model
(CosmosWorks)
Three-dimensional problem of solid mechanics

\[\rho d\mathbf{v} / dt = \nabla \cdot \mathbf{\sigma} + \rho \mathbf{g} \]

\[d\mathbf{\sigma} / dt = \lambda (\mathbf{e} : \mathbf{I}) \mathbf{I} + 2\mu \mathbf{e} \]
\[\mathbf{e} = (\nabla \mathbf{v} + \nabla \mathbf{v}^T) / 2 \]

Nonlinear contact conditions between the disk and blades

\[\sigma_n < 0 \quad |\sigma_{n\alpha}| < q|\sigma_n| \quad [\mathbf{v}_{\tau\alpha}] = 0 \quad [u_n] = 0 \]

\[\sigma_n < 0 \quad \sigma_{n\alpha} = q|\sigma_n|[\mathbf{v}_{\tau\alpha}] / ||[\mathbf{v}_{\tau\alpha}]|| \quad [\mathbf{v}_{\tau\alpha}] \neq 0 \quad [u_n] = 0 \]

\[[u_n] \geq 0 \quad \sigma_{n\alpha} = \sigma_n = 0 \quad (\alpha = 1, 2) \]
Aerodynamic loads on the blade
(Hypothesis of the isolated profile)

The pressure jump on the surface of a blade in a grid

\[
\Delta p(r, x) = \rho \left(v_\infty^2 + \omega^2 r^2 \right) \exp \left(-\frac{a N}{2r} \right) \sin 2\alpha(r) \sqrt{\frac{sh N(a-x)}{2r}} \left/ \frac{sh N(a+x+\delta)}{2r} \right.
\]

\[
\Delta p^c(r, x) = \Delta p(r, x) / \sqrt{1-M^2}
\]

\[
M = \frac{w}{c} = \sqrt{v_\infty^2 + \omega^2 r^2} / c
\]

\[
\alpha(r) = \gamma(r) - \arctg(v_\infty / \omega r)
\]
Two stages: 1) computation of the entire compressor disk (a coarse mesh) 2) computation of the disk sector with the blade (a refined mesh)
Results of the stress-strain state computation

- Displacements
- Mises invariant
- Maximal main stress
Results of the stress-strain state computation

Maximal main stress

Mises invariant

Maximal main stress
Low-cycle fatigue fracture
(flight loading cycle)

\[\sigma_a = \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \]

\[R = \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} \]

\[\sigma = \sigma_u + \sigma_c N^\beta \]

Uniaxial fatigue curve
Models of Multiaxial Fatigue Fracture Based on the Stress State

\[\Delta \tau / 2 + \alpha_s \sigma_{mean} = S_0 + AN^b \]

Sines

\[\Delta \tau / 2 + \alpha_c (\bar{\sigma}_{\text{max}} - \Delta \tau / 2) = S_0 + AN^b \]

Crossland

\[(\Delta \tau_s / 2 + \alpha_F \sigma_n)_{\text{max}} = S_0 + AN^\beta \]

Findley

\[\Delta \tau = \sqrt{(\Delta \sigma_1 - \Delta \sigma_2)^2 + (\Delta \sigma_1 - \Delta \sigma_3)^2 + (\Delta \sigma_2 - \Delta \sigma_3)^2} / 3 \]

\[\sigma_{\text{mean}} = (\sigma_1 + \sigma_2 + \sigma_3)_{\text{mean}} \]

\[\bar{\sigma}_{\text{max}} = (\sigma_1 + \sigma_2 + \sigma_3)_{\text{max}} \]
Models of Multiaxial Fatigue Fracture Based on the Strain State

\[\frac{\Delta \gamma_{\text{max}}}{2} + \alpha_{\text{en}} \Delta \varepsilon_{\perp} = \beta_{1} \frac{\sigma_{c}}{E} - 2 \frac{\sigma_{\text{mean}}}{(2N)^{b}} + \beta_{2} \varepsilon_{c} (2N)^{c} \]

Brown-Miller

\[\frac{\Delta \gamma_{\text{max}}}{2} (1 + k \frac{\sigma_{\max}}{\sigma_{y}}) = \frac{\tau_{c}}{G} (2N)^{b_0} + \gamma_{c} (2N)^{c_0} \]

Fatemi-Socie

\[\frac{\Delta \varepsilon_{1}}{2} \sigma_{\perp \text{max}} = \frac{\sigma_{c}}{E} (2N)^{2b} + \sigma_{c} \varepsilon_{c} (2N)^{b+c} \]

Smith-Watson-Topper
Models of Fatigue Fracture with Damage

\[
\frac{dD}{dN} = \left[1 - (1-D)^{\beta+1}\right]^\alpha \left[\frac{A_{IIa}}{M_0(1-3b_2\sigma)(1-D)}\right]^\beta
\]

Lemaitre-Chaboche

\[
N = \frac{\gamma + 1}{C} \left(\frac{\sigma_u - \theta \cdot \sigma_{VM}}{A_{IIa} - A^*}\right) f_{cr}^{-(\gamma+1)}
\]

ULG

\[
\alpha = 1 - a \left(\frac{(A_{IIa} - A^*)}{(\sigma_u - \sigma_{VM})}\right)
\]

\[
\sigma_{VM} = \frac{1}{\sqrt{2}} \sqrt{S_{ij,max}^2 S_{ij,max}^2}
\]

\[
\sigma_H = (\sigma_1 + \sigma_2 + \sigma_3)_{max} / 3
\]

\[
A_{IIa} = \frac{1}{2} \sqrt{\frac{3}{2} (S_{ij,max} - S_{ij,min}) (S_{ij,max} - S_{ij,min})}
\]

\[
f_{cr} = \frac{1}{b} \left(A_{IIa} + a \cdot \sigma_H - b\right)
\]
DURABILITY ESTIMATIONS FOR COMPRESSOR DISK

Low-cycle fatigue fracture
(flight loading cycle)

Number of cycles for fracture:
20000-50000 flight cycles ~ 40000-100000 hours
Very-high-cycle fatigue fracture

(influence of vibration loads)

$u_z = \pm 1\text{mm}$

High frequency axial vibrations:

$A \sim 1\text{ mm}$ $T \sim 0.2\text{ sec}$
Very-high-cycle fatigue fracture
(bimodal distribution of fatigue durability)

Titanium alloy Ti-6Al-4V
DURABILITY ESTIMATIONS FOR COMpressor DISK

Sines Crossland Findley

Very-high-cycle fatigue fracture
(influence of vibration loads)

Number of cycles for fracture $10^9 - 10^{10} \sim 50000$ hours
Conclusions

The procedure of structure elements durability estimation for two alternative LCF (flight cycles) and VHCF (vibrations) fatigue mechanisms is developed.

The comparative study of durability estimation of the GTE compressor disk-blade contact structure is performed on the basis of multiaxial fatigue models.

Obtained results indicate very close durability estimations for LCF and VHCF with in-service time for titanium compressor disk one of the GTE.
A.A. Shanyavskiy

Modeling of Metal Fatigue fracture. (Monograph, Ufa, Russia 2007)

N.G. Burago, A.B. Zhuravlev, I.S. Nikitin

Models of Multiaxial Fatigue Fracture and Service Life Estimation of Structural Elements.

Thank you!
Very-high-cycle fatigue fracture
(bimodal distribution of fatigue durability)

Aluminium alloy 2024-T3

Steel SUJ2

Titanium alloy Ti-6Al-4V