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Abstract. The paper studies a building-up process where low-velocity heated micro-particles 

collide with an undeformed substrate. For a model of a one-dimensional rigid plastic collision 

with the law of hardening close to linear law approximate analytical estimates for the final 

thickness of a deformed hot particle incident on an undeformed substrate, its radius and the 

collision time as a function of the velocity are obtained. A comparison of the numerical and 

analytical results in the one-dimensional approximation with the results of multidimensional 

modeling of the unsteady collision process using finite-element schemes is carried out. The 

possibility of usage the one-dimensional model is shown to estimate layers’ thickness as a 

function of micro-particles’ velocity and gas’ temperature. Also, the solution for a model of a 

one-dimensional rigidviscoplastic collision with a non-linear law of viscosity is obtained. 

1. Introduction 

The spraying process of micro-particles is commonly used to reinforce responsible structural elements 

or to build-up layer by layer an element that was damaged during a process of exploitation. For this 

purpose some amount of micro-particles is distributed within a heated gas stream moving towards a 

mobile substrate. Yield stress of a particle’s material is rather low due to high temperature of a stream 

which is just below the material’s melting point. As the result, a laminate texture of the structure 

element is formed. The thickness of the layers and mechanical properties of the built-up by spraying 

element depend on ultimate particles’ thickness under the dynamic deformation process. 

A formulation of the problem and method of calculation the ultimate particle’s thickness are like 

the Taylor model for one-dimensional collision of a bar from rigid plastic material with an 

undeformed substrate [1]. However, the applicability of such a simplified model of impact interaction 

is not justified in advance. 

The system of ordinary differential equations that are corresponding to the considered approximate 

model was solved numerically by a finite difference calculation. The applicability of approach of 

using a one-dimensional model to estimate the thickness of built-up layers as a function of gas’ 

temperature and particles’ velocity was approved by comparison with a multidimensional elastoplastic 

FEM calculation. 

Also, the solution for a model of a one-dimensional rigidviscoplastic collision for the non-linear 

law of viscosity was obtained. It is shown that the same particle’s dimensions, as if using the previous 

model, occur under the higher temperature due to dynamic rise of the yield stress. 



AMCSM_2018

IOP Conf. Series: Journal of Physics: Conf. Series 1203 (2019) 012021

IOP Publishing

doi:10.1088/1742-6596/1203/1/012021

2

 

 
2. The Taylor model 

Let us consider a dynamic deformation pattern that corresponds to the classical Taylor model and was 

given in [1-3]. A bar of length 0h , radius 0r , made of rigid plastic material is moving at a velocity of 0v  

towards an undeformed substrate. At 0t   the bar strikes the substrate (figure 1). We consider a 

movement of the bar as a quasi-one-dimensional; velocity and strain distributions are homogenous 

within every cross-section of the bar.  

 

Figure 1. The Taylor collision model. 

A system of equations comprises a relation for deformation behind a plastic wave, the conservation 

of momentum at the plastic wave front, a kinematic relation for a height of bar’s rigid part, the second 

Newton’s law for the rigid part, and a plastic deformation law: 

/ ( )v v w    

s( )v w v      

d / d ( )h t v w    

s

d

d

v
h

t
    
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mE     

where ( )v t   is rigid part’s velocity; ( )w t   is plastic wave velocity; ( )t   is stress behind the shock 

wave; s is a yield stress;    is a density; pE is a strain hardening modulus; m is a degree coefficient of  

hardening. Initial conditions are: 

0 00:  ,  t v v h h    

Conditions to determine a stopping time ft t  and the rigid part’s height fh  are: 

0,  0v w   

One can transform the considered system of equations to: 
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d / d ( )h t v w    
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It is impossible to solve analytically this system of equations for the arbitrary m. Therefore an 

approximate solution was made with the principal terms obtained at the point with 1 1m      

where 1  . It was assumed that the    hardening law within a plastic domain is close to linear 

( pE << E where E   is a Young’s modulus). 

The approximate solution is: 
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One can obtain the plastic zone’s height hp using the plastic wave velocity ( )w t : 

/2
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( )d 1 exp 1 exp
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v v v vv
h w t t h

v v v v v

          
              
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  

Total bar’s height is h1 = hp + hf. It is important to notice that shape of bar’s part in plastic state is not 

defined according to the current approach. Therefore the shape is defined by using the assumption of 

incompressibility of bar’s material: 0 0 p( ) / .fr r h h h 
 

 

 

(a)                                                        (b)                                                     (c) 

Figure 2. Particle’s shape at 0v  = 20 m/s, 7

p 2.5 10E   Pa, m  = 1.2; 

(a) T  = 1600;     (b) T  = 1620;     (c) T  = 1633. 

 

Using the primary formulas for the numerical evaluation of the bar’s shape a number of initial 

conditions have been analyzed. Listed below parameters were used: particle’s material is titanium; 
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height 
6

0 30 10h m  ; 0r = 0 / 2h ; density  = 4500 kg/m
3
; Young’s modulus 

9116 10E    Pa; 

Poisson ratio  = 0.32; yield stress at normal conditions 
8

s0 3 10    Pa; initial velocity 0v = 20 m/s. 

The bar’s temperature is within the range T = 1600 - 1660 °С, whereas titanium’s melting point mT  is 

1665 °С. Defining yield stress at the temperature about the melting point is a rather uncertain task [4]; 

thus a linear approximation   s s0 m mmax / ,0T T T    was used. 

Figures 2 and 3 show the shape after collisions at different stream’s temperatures, which are close 

to the melting point. 

Figure 4 shows the shape after collisions at different stream’s velocities. Figure 5 shows an 

influence of the strain hardening modulus   and the power of hardening   on the shape. 

 

 

 

(a)                                               (b) 

Figure 3. Particle’s shape at 0v  = 20 m/s, 7

p 2.5 10E   Pa, m  = 1.2; 

(a) T  = 1640;     (b) T  = 1650. 

 

 

 

(a)  (b)                          (c) 

Figure 4. Particle’s shape at T  = 1620, 7

p 2.5 10E   Pa, m  = 1.2; 

(a) 0v  = 20 m/s;     (b) 0v  = 15 m/s;     (c) 0v  = 10 m/s. 
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(a)                                                        (b)                                                     (c) 

Figure 5.Particle’s shape at 0v  = 20 m/s, T  = 1620; 

(a) 7

p 2.5 10E   Pa, m  = 1.8; (b) 7

p 1 10E   Pa, m  = 1.8; (c) 7

p 1 10E   Pa, m  = 1.2. 

 

 

3. Multidimensional modeling 

In order to compare the above results a multidimensional modeling based on the numerical method 

from [5-7] was performed. Techniques to improve the accuracy of numerical solutions with complex 

time-varying geometry and reduce their computational costs were applied. The approach combines 

shock-capturing computations with the following methods: overlapping meshes for specifying 

complex geometry; elastic arbitrarily moving adaptive meshes for minimizing the approximation 

errors near shock waves, boundary layers, contact discontinuities, and moving boundaries; matrix-free 

implementation of efficient iterative and explicit-implicit finite element schemes; balancing viscosity 

(a version of the stabilized Petrov–Galerkin method); exponential adjustment of physical viscosity 

coefficients; and stepwise correction of solutions for providing their monotonicity and 

conservativeness. The grid-characteristic method was used in [8-9] to solve contact problems as well. 

Figures 6 and 7 show ultimate bar’s shapes for the same as figure 2 initial conditions. 

 

 

 

(a)                   (b)                             (c) 

Figure 6. Particle’s shape at 0v  = 20 m/s; 

(a) T  = 1600;     (b) T  = 1620;     (c) T  = 1633. 
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(a)                                                  (b)                                                     (c) 

Figure 7.Contour plot of the plastic work at 0v  = 20 m/s; 

(a) T  = 1600;     (b) T  = 1620;     (c) T  = 1633. 

Comparing figure 2 and figure 6 one can see the one-dimensional model gets ultimate thickness on the 

bar's part in a plastic state rather well within studied boundaries comparing to the multidimensional 

one. 

 

4. The Ishlinsky model 

In [8] Ishlinsky proposed the quasi-one-dimensional model based on a rigidviscoplastic material with 

a non-linear law of viscosity, so called rigid viscoplastic hardening law. Let a bar of length l  made of 

such material is moving at a velocity of 0v towards an undeformed substrate. At 0t   the bar strikes 

the substrate (figure 8).We consider a motion of the bar as a quasi-one-dimensional. Velocity and 

strain distributions are homogenous within every cross-section of the bar. Let’s put down a system of 

equation of the model. 

For the viscoplastic part of a bar ( s  ) in any cross section the velocity ( , )v x t  is: 

v

t x



 


 

 

Strain rate depends on stress by: 

s swhile
v

x
    


   


 

s0 while
v

x
 


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
 

Excluding stress one can obtain the equation for velocity: 

2

02
while 0 ( )

v v
x x t

t x





 
  

 
 

For motion of the rigid bar’s part with decreasing velocity 0 ( )v t an equation is: 
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Owing to continuity of velocity and stress at the moving boundary 0 ( )x x t between viscoplastic and 

rigid parts we have 

 0 0( ), ( )v x t t v t   

 0 ( ), 0v x t t
x





 

Boundary conditions for ( , )v x t  are: 

0t  (0, ) 0v t   

Initial conditions are: 

0 x l  0( ,0)v x V   

For the rigid part the initial condition is: 

0 0(0)v V  

Position of the moving boundary at initial time moment is: 

0 (0) 0x   

 

Figure 8. System’s state at the initial time moment. 

Here we have a non-classic heat conduction problem with an undefined internal moving boundary 

layer for the velocity of a rigid part 0 ( )v t  and its position 0 ( )x t  and velocity ( , )v x t   of any cross 

section lying between a substrate and the internal moving boundary layer. We have found that the 

Saint-Venant’s parameter s 0/s l V   has a crucial influence on the system behavior. 

Due to incompressibility of the material one can calculate an area F of any cross section: 

1

0 1
U

F F
x


 

  
 
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where U is the longitudinal shift of a cross section from its original position within a viscoplastic part: 

0

( , )d

t

U v x     

It is of interest to examine a bar with the same geometrical and material parameters as previously, i.e. 

particle’s material is titanium; height l = 1 (unitless); 0 / 2r l ; density   = 4500 kg/m3; yield stress 

at normal conditions 
8

s0 3 10    Pa; 

The problem was solved numerically. The dependence of the shape of a specimen as a function of its 

velocity, temperature and viscosity are presented (figures 9-11). 

 

 

(a)                                             (b)                                     (c) 

Figure 9.Particle’s shape at T = 1664, μ = 0.3; 

(a) V0 = 20m/s;    (b) V0 = 15 m/s,    (c) V0 = 10 m/s. 

 

 

(a)                                                  (b)                                 (c) 

Figure 10.Particle’s shape at V0 = 20m/s, μ = 0.3; 

(a) T = 1664;    (b) T = 1662;    (c) T = 1660. 

 

It is seen that high influence of stream temperature and viscosity on a particle’s ultimate shape 

takes place. Varying the parameters one is able to change the shape drastically. Comparing the 

Ishlinsky and the Taylor models shows that an influence of viscoplasticity at the same initial 

conditions reveals by the less value of plastic deformations in the Ishlinsky model than in the Taylor 

one. The reason is the dynamic rise of the yield stress. 
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(a)                                                        (b)                                                     (c) 

Figure 11.Particle’s shape at V0 = 20m/s, μ = 0.9; 

(a) T = 1664;    (b) T = 1662;    (c) T = 1660. 

 

 

5. Conclusions 

The spraying process of micro-particles is commonly used to reinforce responsible structural elements 

or to build-up layer by layer an element that was damaged during a process of exploitation. The 

possibility of usage the one-dimensional model is shown to estimate layers’ thickness as a function of 

micro-particles’ velocity and gas’ temperature. 

For the laws of hardening close to linear by the perturbation method the approximate analytical 

estimates are obtained for the finite thickness of a deformed hot particle incident on an undeformed 

substrate. Also, the estimates are obtained of the ultimate particle's radius and the collision time as a 

function of the velocity. The system of ordinary differential equations of the rigid plastic model under 

consideration is numerically and analytically solved.  

A comparison of the numerical and analytical results in the one-dimensional approximation with 

the results of multidimensional elastoplastic modeling of the unsteady collision process using finite-

element schemes is carried out. Techniques to improve the accuracy of numerical solutions with 

complex time-varying geometry and reduce their computational costs were applied. 

The efficiency of the obtained approximate formulas for estimating the thickness of the build-up 

layers as a function of particle velocity and flow temperature is shown. Also, the solution for a model 

of a one-dimensional rigidviscoplastic collision with the non-linear law of viscosity was obtained. It is 

shown that the same particle’s dimensions, as in the case of the previous model, are observed under 

the higher temperature while taking into account a non-linear law of viscosity due to dynamic rise of 

the yield stress. 
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