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Moving interfaces between media play an important role in technological and natural processes. The
development of methods for solving problems with moving interfaces is one of the major aims of continuum
mechanics. This review concentrates on parts of the numerical methods of continuum mechanics named
contact algorithms that serve to track and calculate moving interfaces such as contact, phase change, and
moving free boundaries.

1. Types of contact algorithms under consideration

Contact algorithms can be classi�ed according to the concept utilized for the description of motion of
a continuous medium. In Lagrangian contact algorithms, the nodes move with the velocity of the material
medium. In non-Lagrangian contact algorithms, the nodes either are �xed (Eulerian algorithms) or move
independently of the material medium (Arbitrary Lagrangian{Eulerian (ALE) algorithms). A characteristic
feature of non-Lagrangian algorithms is the occurrence of convective terms in the evolution equations due
to a di�erence in the velocities of the grid (coordinate system) and the medium.

In both cases (Eulerian and Lagrangian), the moving interfaces can be treated explicitly by tracking

algorithms as a set of surface nodes (or markers) and cells or be de�ned implicitly by capturing algorithms.
The capturing algorithms are based on continuous marker functions that take on a certain constant values
at the moving boundaries.

This known classi�cation underlies the systematization of the publications to be reviewed. In the present
paper, we consider all types of contact algorithms, irrespective of the types of contacting media, which
is in agreement with the modern tendency to unify the methods of solid mechanics and hydrodynamics.
This tendency is accounted for by the requirement for construction of uni�ed computational models for
technological and natural processes.

2. Types of boundaries under consideration

In addition to the classical initial-boundary value problems of continuum mechanics, the contact prob-
lems involve speci�c boundary conditions (kinematic and dynamic constraints, phase change laws) that
govern the motion of the interfaces and possible boundary singularities.

For the classical contact problems, such conditions express the impenetrability constraint, the action-
reaction law (Newton's third law), and the surface friction law. The normal contact constraints prevent
mutual penetration of immiscible media, while the tangent contact constraints represent friction between
the contacting media. The extended physical-chemical formulation involves also boundary conditions for
heat transfer, electromagnetic interaction, di�usion, chemical reactions, etc.

Additional relevant cases of boundary conditions determining the behavior of free and phase change
boundaries are also considered. The moving free boundaries are Lagrangian surfaces between a condensed
(liquid or solid) medium and a rare�ed medium. The boundary conditions at the free boundaries describe
the in
uence of the rare�ed medium characterized by the forces of external pressure and friction, as well as
the surface tension forces, which depend on the orientation and the curvature of the boundary (besides the
dependence on state variables).

Unlike the classical contact and free boundaries, the phase change boundaries are non-Lagrangian, and
the motion of such boundaries in a continuum is governed by the phase equilibrium conditions (such as,
for example, Stephan's law, Chapman{Jougeot detonation condition, yield condition, fracture condition,
etc.) The phase change boundaries are weak discontinuity surfaces that move along the continuous medium
tracking the phase change process characterized by sharp changes in the properties of the continuum. The
temperature, velocities, displacements, and stresses are continuous at the phase change boundaries, whereas
the coe�cients of elasticity and plasticity, heat capacity, compressibility, and other media properties can
undergo a jump discontinuity.

One more important special limiting case of contact is a contact of deformable solid and liquid media
with rigid bodies. This type of contact is also considered in the present review.

1 N. G. Bourago and V. N. Kukudzhanov,\A review of contact algorithms," Izv. RAN, MTT, No. 1,
pp. 45{87, 2005.
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3. Reviews of formulations of contact problems

Initial-boundary value problems can be formulated in the di�erential, integral or variational forms. The
variational formulations, especially the formulations in terms of variational inequalities, play an important
role in the analysis of the existence and uniqueness of solutions of initial-boundary value problems and their
well-posedness.

Formulations of contact problems have been dealt with in [136, 156, 170, 193, 369{371, 410, 423, 501,
503, 544, 545, 556, 557], where one can �nd references to additional sources. Theoretical foundations for the
statement of contact problems related to phase changes have been reviewed in [76, 199, 299, 351, 420, 421,
428, 524]. Bibliographic lists of publications devoted to the existence and uniqueness of solutions of contact
problems can be found in book of collected reviews [587].

In many of the modern publications on contacts of media the initial-boundary value problems are
formulated in the Galerkin variational form. In this case, the boundary conditions are treated as constraints
to be taken into account in the variational equation by using Lagrange multipliers or penalty functions. For
a review of methods to take into account constraints in general variational problems, see, for example [497].

A reviews of Arbitrary Lagrangian-Eulerian formulations of continuum mechanics problems are given
in [63, 89, 165, 214, 282, 299, 361].

4. Reviews of methods for contact calculations.

A large number of recent reviews of numerical-analytical methods for contact calculations, initiated by
Hertz's work [275], are given in the book of collected reviews [587].

In the present paper, we consider numerical-discrete methods for the calculation of contact boundaries.
These methods comprise �nite-di�erence, �nite-volume, and �nite-element algorithms, as well as Galerkin's
"meshless" methods and contact algorithms of the boundary element method.

Large bibliographies on contact algorithms in solid mechanics have been presented in [6, 76, 99, 199,
232, 233, 289, 331, 374, 397, 625, 627] and in a number of other publications cited in what follows farther in
connection with algorithms of speci�c types.

Reviews of algorithms for calculating the interfaces of immiscible media within the hydrodynamics
framework are presented in [11, 12, 58{60, 76, 214, 315, 359, 360, 494, 509, 538].

5. Lagrangian algorithms for calculating contacts with rigid bodies.

An overwhelming number of publications on contact problems relates to contact of deformable solid and
liquid media with rigid bodies (walls, punches, impactors or obstacles). In this case, the moving boundary
of rigid bodies is regarded as a prescribed slip surface. This surface can be smooth or rough. The motion
of the rigid bodies is either assumed to be predetermined or calculated by using the methods of theoretical
mechanics taking into account the mass of the rigid bodies and the contact reaction forces.

Examples of calculations for contacts with rigid bodies, as well as additional references, can be found in
[31{33, 198, 248, 344, 346{348, 374, 431, 485, 495, 616, 617]. Reviews of investigations in this direction are
given in [150, 199, 550]. In Lagrangian contact algorithms, the velocities at the boundaries between rigid
and deformable media are either prescribed or determined by the penetration of the nodes of the moving
grid in deformable media into the prohibited spatial regions that represent rigid bodies. The velocity and
displacement components normal to the surface of the rigid body are corrected to prevent the penetration.

In many algorithms, such a correction is reduced to the equating of normal velocities of the deformable and
rigid boundaries. The correction can be also performed by the elimination of the penetration by applying
external normal loads, which represent the contact pressure. The calculation of friction forces does not have
speci�c features in comparison with more general contact algorithms and is considered farther.

6. Lagrangian capturing contact algorithms.

In the Lagrangian capturing algorithms, the solution is continuous at the contact boundary and contact
discontinuities are modeled by large gradients of the solution.

Models of ideal contact. Matched grids. A simple approach to the calculation of a contact in the case
of small strains for a prescribed (possibly moving) Lagrangian contact boundary involves an approximate
representation of the full adhesion conditions that characterize the ideal contact. The Lagrangian grids
in the contact region are matched node to node, slip and rebound (coming unstuck) of the contacting
bodies are prohibited. The solution at the contact boundary is continuous for the displacement and velocity
(ideal contact). There are many publications in which such a scheme is used for contact calculations. Any
algorithm for solving continuum mechanics problems by a grid based method can serve as an example. If
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di�erent properties of the material have been prescribed in di�erent domains, such an algorithm implements
the conditions of ideal contact automatically.

Typical examples of calculations for the ideal contact can be found, for instance, in old Russian papers on
�nite-element method published 20-30 years ago [382, 440, 491, 493, 514, 515, 542, 582, 586]. For references
to international publications on the ideal contact, see, e.g., [632].

In the general case of variable contact region, where the slip and coming unstuck of the contacting
bodies can occur, the ideal contact model, which ignores these phenomena, is physically inadequate and,
therefore, is not utilized.

Ideal contact. Unmatched grids. A contact algorithm for matching the solutions to satisfy the ideal
contact conditions in the case of unmatched grids in the contact region has been proposed in [47] for 2D
case and developed in [49, 50] for 3D case. Apart from the contact calculations, this algorithm is utilized
for the calculation of joints in composite structures. This algorithm does not require one to worry about the

matching of the grids at the boundaries of subdomains to provide continuity of the solutions. This simpli�es
the construction of grids in combined 3D subdomains of complex shape. Recently these algorithms have
been rediscovered [191, 477, 479].

Bu�er layer algorithms are based on the introduction of a �ctitious bu�er contact layer (contact pseu-
domedium) between the contacting bodies. The bu�er layer consists of the contact cells, the nodes of which
belong to the contacting boundaries. The introduction of the bu�er layer of cells reduces the contact problem
for many bodies to a problem for a single composite inhomogeneous body. As a rule, only one cell is utilized
across the bu�er layer thickness. Depending of the prescribed properties of the contact, these cells can play
the role of an elastic spring, a viscous damper, an adhesive contact, etc. The stresses acting in the bu�er
layer imitate the contact loads. The success or failure of this imitation depends on the properties prescribed
for the material of the bu�er layer. These properties should provide the appearance of compressive contact
loads, prevent the appearance of tensile contact loads (to model coming unstuck), and model friction forces.
The resulting mathematical model should be well-posed. In addition, for \cosmetic" and accuracy reasons,
the bu�er layer thickness is desired to be much smaller than the characteristic size of the contacting bodies.

The issues of the implementation and theoretical substantiation of the bu�er layer algorithms have been
considered, for example, in [155, 211, 362, 381, 430, 433, 447, 448, 480, 492, 516, 518, 519, 555, 588, 619{621].

Lagrangian united-equation-of-state algorithms serve for the calculation of the development of internal
contact discontinuities such as macro-cracks. In these algorithms, cracks are modeled by narrow internal
zones with weakened resistance of the material to deformation. These zones are formed if some damage
criterion has been satis�ed. For the description of such through calculation algorithms, see, e.g., [65, 66, 87,
88, 96{98, 100, 199, 253, 254, 300, 312, 349{351, 374{376, 404, 405, 416, 442, 457, 527, 576]. If the damage
criterion (for example, formulated in terms of the limiting principal strains or stresses) has been satis�ed
in a Lagrangian cell, the elastic moduli and stresses relax to zero forcing strain localization and only the
compression strength is preserved in the material. A comprehensive review and the description of this type
of through calculation algorithms is given in [199]. It can be easily seen that the narrow damage zones in
such algorithms are similar to the bu�er contact layers that have been considered previously.

Multiple contact. Problems of multiple contact of deformable bodies appear in many applications, for
example, in the numerical study of the properties of composite materials consisting of many contacting
components, in the calculations associated with hitting a target with a case-shot or in the analysis of the
interaction between rough surfaces. Publications in this direction have been reviewed in [199, 220, 235, 363,
599, 602, 609].

Algorithms for calculating multiple contact in accreting bodies have been considered in [16, 420, 421].
This type of problems covers the layer-by-layer formation of composite materials, loading of a soil during the
construction work, growth of crystals in the process of solidi�cation of metallic melts and polymer solutions,
spraying, deposition, and freezing.

When solving multiple contact problems, helpful are the models and algorithms for through calculation
of contact boundaries that have been utilized for studying the strength properties of composite materials
by considering the deformation of an idealized small domain containing a fairly large number of dissimilar
contacting subdomains (the matrix and inclusions).

As the number of the contacting elements increases, the direct numerical modeling becomes complicated
and one has to involve continuum models for the multiple contact. For example, an e�ective method for solv-
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ing multiple contact problems for sandwich and block structures is based on the asymptotic homogenization
for media with periodic structure. A review of publications in this direction is given in [446], with partic-
ular cases of homogenization models and their numerical implementation being presented. The approach
developed in the cited publication allows e�ective modeling of fracture in masonry structures, a brickwork or
layered rock, with delamination and friction on contact surfaces being taken into account. The constitutive
relations for these structures are similar to those for an elastoviscoplastic medium. The delamination is
taken into account by speci�c functions.

The modeling of non-Lagrangian interfacial boundaries (e.g., liquid{vapor or liquid{solid for melting or
crystallization)[531, 538] on the basis of united-equation-of-state algorithms will be considered below when
describing Eulerian through calculation contact algorithms.

7. Contact detection algorithms.

For the numerical calculations on the basis of Lagrangian grid methods, the boundaries of bodies are

represented by a set of boundary surface cells. In most cases, the contact region is unknown in advance
and has to be detected during the calculation. It is identi�ed either by the penetration of \alien" boundary
nodes through \friendly" boundary cells in the preliminary calculation, in which the contact is not taken into
account, or by the approach of the boundaries to a prescribed small distance which the fact is detected by the
pairwise check of the mutual positions of boundary nodes and cells. The search for the contact region results

in a list of contact pairs (for example, of the \alien node{friendly cell" type), which introduce the contact or
bu�er elements. Sometimes, the contact pairs can be represented by combinations of \node{�ctitious node"
or \cell{cell", i.e., by pairs of discrete elements of the contacting boundaries.

The number of operations for searching for contact pairs is proportional to the square of the number
of boundary cells or nodes. For problems with large number of nodes this leads to unacceptably great
computational e�ort. Farther, we consider available algorithms for accelerated search for the contact region.

Master{slave (node-to-segment) algorithm is one of the �rst contact searching (detection) algorithms. It
was proposed in [238, 260]. To reduce the computational e�ort, the regions of possible contact are speci�ed
in advance. One of the contacting surfaces is considered to be the master surface and the other (slave
surface) is subordinated to it. The master surface is represented by the boundary cells and the slave surface
by the boundary nodes. The algorithm utilizes a priory information about the region of possible contact and
identi�es contact pairs by the penetration of the slave nodes through the master's boundary cells. To detect
the penetration, the algorithm checks the sign of the normal projection of the slave node onto the master
cell and the fact that the normal dropped from this node onto the cell intersects this cell.

Note that in many problems, it is impossible to predict master and slave contact surfaces in advance.
The necessity to describe the contact regions in the initial data for bodies of complicated geometry is rather
burdensome. An additional argument against the utilization of a priori information about the contact region
is the possibility of self-contact. By self-contact, the contact between di�erent parts of the surface of the
same body is understood. Self-contact can occur in the case of large deformation.

In the contact searching algorithms to be considered in what follows, the search process is divided into
two or more levels to accelerate the process of detection of contact pairs. These levels are usually referred
to as the global an local ones. On the global levels, the regions of possible contact are searched for among
groups of neighboring nodes. The groups of nodes that lie far away from the region of possible contact and,
therefore, are not involved in contact are rapidly discarded in accordance with an appropriate group criterion
associated with the distance. On the last (local) level, contact pairs \node{boundary cell" are identi�ed by
the violation of the impenetrability constraint or by a su�cient proximity criterion. The contact searching
algorithms di�er from one another in the criteria for grouping the nodes, group characteristics, hierarchy,
and methods for quick sorting.

Among the well known global algorithms of searching for contact region, we mention the regular cell
algorithm [530], the hierarchy{territory algorithm [626, 628], the linear position code algorithm [623, 624],
the bucket sorting algorithms [64, 75], and the spherical sorting algorithm [472].

The hierarchy{territory algorithm and the linear position code algorithm are most widely utilized and
e�cient global contact searching algorithms.

The Hierarchy{Territory Algorithm (HITA) [626] is based on the grouping of the boundary elements
lying close to one another and searching for possible contact regions by means of the analysis of the distances
between the groups of elements. After having found possible contact groups, the local search is performed.
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If the number of the boundary elements is very large, a hierarchy of the groups is constructed and the search
for a possible contact occurs consecuitively from higher-level to lower-level groups.

The Linear Position Code Algorithm (LPOCA) [455] arti�cially orders all boundary nodes of the �nite-
element grid. To that end, the parallelepiped bordering the solution domain is divided into a large number
of small \bricks" with a structured ijk numbering, i.e., an additional uniform regular ijk grid is introduced.
Each node of the unstructured �nite-element grid is assigned an ijk number, depending on the small \brick"
entered by this node. Such an additional numbering contains information about the arrangement of the nodes,
which enables one to use this numbering for forming clusters (groups of neighboring nodes) and reducing
the number of checks, thereby accelerating the search for contact regions (see also [21, 273, 418, 419]).

The Space Filling Curve algorithm (SFC) [157] hierarchically divides the solition region into squares as
is the case in the familiar problem of catching a lion in Sahara desert. Parts of the desert are consecutively
bisected with the selection of the part in which the lion is located. The bisection continues until the current
part becomes so small that the lion has no place to hide. In a similar way, the SFC algorithm divides the
searching domain into four rectangular parts (in the 2D case) until only one node remains in the cell. This
node is assigned a position code (an address) formed by a chain of binary codes (00 for the left lower part,
01 for the right lower part, 10 for the left upper part, and 11 for the right upper part) to indicate the path
to the given node. To detect the neighbouring nodes for the given one, the algorithms of quick comparison

of position codes are utilized. These algorithms are based on XOR-operations combined with binary and
exponential search.

The local inside-outside algorithm [590] e�ectively copes with the "deadzone" problem. The matter is
that at the in
ections of the boundary there appear internal dead zones and it is unclear where the alien
boundary node penetrated the boundary and situated in the dead zone could be \pushed out". The algorithm
suggests a simple strategy, according to which this node should be pushed out backward by means of the
reaction forces directed along the Lagrangian trajectory of the node (inside and outside in the same track).

The local gap function algorithm (GFA) [280], according to the concept of its authors, should enable all
contacts for problems characterized by very complicated geometry and very high dimension to be considered
in a uni�ed way. The algorithm is based on the scalar gap (material depth) function de�ned in the domain
of the solution. For each node, this function is calculated one time for the initial position of the moving
boundary and is equal to the initial distance from this node to the nearest boundary. Outside the solution
domain this function takes on zero value. Penetrated alien node lies inside some cell of the spatial grid and,
hence, is characterized by two values of the gap function. One of these values (the proper value for this
node) is equal to zero, while the other one corresponds to the position of the node inside the cell and is
nonzero. The direction of push back contact forces is de�ned by the negative of the gap function gradient; the
penetration depth and reaction force magnitude are proportional to the gap function value. The e�ciency
of the gap function algorithm depends on the e�ciency of the interpolation of the gap function.

The gap function approach is criticized in [470]. According to this study, preferred are conventional
contact pair algorithms, which �t better to the general case of nonsmooth boundaries with in
ections and
the case of multiple contact.

The local pinball algorithm [68, 69] has been proposed to identify complex cases of contact of dissimilar
elements (rods, shells, an spatial members). This method considers a spherical neighborhood of each element
irrespective of its nature (3D, 2D shell, or 1D rod/beam) and contact detection is simpli�ed to an interference
check between these bounding spheres. This procedure is simple, since contact takes place if current distance
between centers of pinballs is less than the sum of their radii. Push back contact forces are applied to the
centers of the overlapped pinballs. The magnitude of push back forces is proportional to the overlap measure.
Then these forces are recalculated from pinball centers to the nodes of the elements to which these pinballs
are related. Since the pinball algorithm is based on simple checks, this algorithm is very quick. It spends
about 15% of time required for the calculation of one time step, while other algorithms sometimes spend
more than 65{70% [76].

The hierarchical pinball algorithm has been developed to remove the drawbacks of the pinball method.
These drawbacks were indicated in the paper [69], in which the pinball method was utilized for thin shells.
It turned out that the pinball method failed if the contacting elements were very thin. To overcome this
di�culty, two modi�cations of the pinball algorithm have been proposed|the quick pinball algorithm and
the splitting pinball algorithm [70]. As is the case for the conventional pinball algorithms, in the splitting
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algorithm, a pinball is associated with each element, although in the modi�ed method the radius of the
pinball is always chosen to be large enough to surround the element. This large pinball is referred to as
the parent one. The overlap of the parent pinballs indicates only the possibility of the penetration. If the
overlap of the parent pinballs has been identi�ed, smaller lower-level pinballs are arranged. The radii of
these pinballs coincide in order of magnitude with the thickness of the shell. The smaller pinballs, distanced
by this radius from one another, cover the surface of a shell element or the length of a beam element. The
overlap of the smaller pinballs with alien pinballs indicates the penetration. In this case, the desired contact
forces are calculated in accordance with the overlap of the small pinballs and then are recalculated for the
nodes of the corresponding surface grid elements.

In a frame of meshfree Galerkin methods an e�ective meshfree contact algorithm based on the principle
of moment of meshfree interpolation is proposed in [459] (see also [57, 458]).

8. Lagrangian contact algorithms. Calculation of contact forces and velocities.

Let the contact region has been identi�ed and let the node{cell contact pairs have been constructed.
Consider algorithms for calculation of the contact velocities and forces.

Slip contact algorithms have been proposed in pioneering works by M. Wilkins [511, 593{598] on the
contact between deformable bodies in the case of variable contact region. The works by M. Wilkins have
greatly in
uenced the development of the contact algorithms for the case of large deformation.

In the slip algorithms, at each time instant, one of the contacting surfaces (alternately) is regarded
as the slip surface (a surface of a rigid body), while the other surface follows the motion of the �rst one
[332{334]. Although the contact conditions in this case are satis�ed approximately, on the average, this
method provides plausible results. The contact forces and velocities in the numerical solution obtained by
means of this method oscillate, which reduces the accuracy of the computation.

For the extension of Wilkins method to 3D case, see, for example [48, 248, 310, 311, 313, 352, 353].

Fictitious node contact algorithms have been introduced in various forms in a number of publications.
In the paper [47], which has already been mentioned in connection with ideal contact algorithms, a 2D
algorithm utilizing the impenetrability constraint along the normal and the free slip condition along the
tangent has been proposed. In the case of mismatch of the grids in the contact region, this algorithm
uses an auxiliary matched grid that consists of the boundary nodes of the primary grid in one of the
bodies and the corresponding (having the same position) �ctitious boundary nodes in the other body. The
values of the solution at the �ctitious nodes on the old time layer (iteration) should be determined by
means of interpolation. On the new time layer, each pair of adjacent (primary{�ctitious) boundary nodes
is subjected to the kinematic constraint (equality of the corresponding normal velocity components) and
the static condition (equality in magnitude of the normal force components). These relations are utilized
to determine the contact pressure magnitudes and correct the boundary nodal velocities at each boundary
node of the primary grid. This algorithm has been extended to 3D contact problems in [50].

Fictitious nodes have been introduced also in many other contact algorithms, for example, in the char-
acteristic algorithms [617] to be considered below and in the hierarchical pinball algorithm [69] that has been
considered previously.

A logical completion of the line of �ctitious-node algorithms is provided by the adaptive contact al-
gorithms. These algorithms at each time step reconstruct the grids locally in the contacting bodies in the
neighborhood of the contact region to provide the node-to-node match of these grids [434].

Characteristic contact algorithms. The relations on the characteristics for hyperbolic systems of equa-
tions of mechanics of elastoplastic media have been utilized in [347, 348, 485, 617] for the calculation of
contact boundaries in 2D problems. The systems of characteristic relations have been written out for each
boundary node in one body and the corresponding �ctitious node in the other body. The solutions of these
systems of equations have been used to determine the contact velocities and forces. The characteristic al-
gorithms can be applied only to unsteady hyperbolic problems. For an update review of the characteristic
algorithms, see, for example, [378].

Contact algorithms based on the Riemann problem and Godunov scheme. The Godunov scheme [223]
utilizes the solution of the Riemann problem for the decay of an arbitrary discontinuity. It has been applied by
Godunov with co-authors [225] to the calculation of contact interactions in the explosion welding processes.
In [225], one can �nd the description of the contact algorithm and references to other publications of the
authors. This line of algorithms has been developed in [1, 9, 10, 520{524]. The family of Godunov algorithms
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has been described in the review of [76] and monographs [378, 578].

Inelastic impact contact algorithms have been applied in various modi�cations in [19, 243, 244, 296, 297,
354, 525, 526, 533]. In these algorithms, the velocities of the Lagrangian nodes in the impact contact region
are corrected on the basis of the solution of the problem of an inelastic impact for the nodal masses that
form node{surface cell or node{�ctitious node contact pairs.

Contact algorithms based on Lagrange multipliers take into account the desired normal contact loads
in the virtual work principle or in discrete equations of the contact nodes motion taking into account the
impenetrability constraint. The normal contact loads in this formulation are the Lagrange multipliers for
the impenetrability constraints. The di�erence between various modi�cations of this approach can consist,
for example, in the form (continuous or discrete) in which the impenetrability constraints are taken into
account, in the methods (direct or iterative) utilized for solving the system of algebraic equations for the
nodal contact pressures, in the interpretation (physical or mathematical) of the algorithms, and in the
methods of approximation of the solution in the contact region. However, despite the apparent di�erences,
all these modi�cations are various versions of the realization of the same concept. Note that most of the
contact algorithms applied in explicit computational schemes can be regarded as versions of the Lagrange
multiplier method.

For small deformations, the algorithms based on Lagrange multipliers have been constructed in [204,
256, 286] - [262], [17], [39{41, 245, 399] For large deformations such algorithms have been developed in
[50, 90, 91, 93, 95, 109, 113, 228, 230, 251, 355, 357, 473, 507, 529, 546, 547, 551, 623, 624, 628].

Penalty function algorithms provide another version of dynamic contact algorithms applied most fre-

quently in implicit schemes to solve contact problems in quasi-static and dynamic formulations. In these
algorithms, the normal load magnitude is assumed to be proportional to the residual of the impenetrability
constraints with large coe�cients of proportionality (penalty coe�cients).

Contact penalty function algorithms for implicit schemes have been developed and described in [18, 44,
93, 95, 111, 119, 202, 245, 258, 291, 325, 329, 331, 356, 377, 409, 450, 451, 474, 488, 546, 608, 609, 626].

The hybrid algorithms, which combine the penalty function and Lagrange multiplier methods, have
been also developed; see, for example [43, 181, 182, 272, 388, 401, 548, 600, 608, 609, 618].

Lagrangian algorithms for explicit treatment of internal contact boundaries. An alternative to the
through calculations algorithms for main cracks is an approach to the fracture modeling in which con-
tact discontinuities corresponding to main cracks are determined explicitly [82, 129, 293, 440, 517]. In this
approach the contact surface is introduced in advance and is de�ned by paired nodes. In the general case,
additional nodes are introduced in the process of solution [244, 432]. Algorithms for reconstructing the grids
in the neighborhood of contact discontinuities are reviewed and described in [214, 384, 385].

A method for explicit treatment of newly formed contact discontinuities, based on the local reconstruc-
tion of the grid by means of \collapse" of the destroyed cell (by means of shifting the nodes of this cell onto
the fracture surface), has been proposed and described in [199, 250, 335]. This method does not require

introducing new nodes.

In a number of algorithms, crack-type discontinuities are modeled on the level of elements without
reconstruction of the grid [549, 559], by using the moving ALE grid technique [506], as well as by introducing
additional degrees of freedom in the elements containing a contact discontinuity [149, 162, 163, 169, 194,
196, 437]. These additional degrees of freedom are associated with speci�c shape functions.

9. Eulerian algorithms for calculating contact boundaries.

Let us imagine the case where two or more domains occupied by one phase of the material coalesce (e.g.,
merging liquid drops). It is di�cult to model such a process by means of Lagrangian grid methods with
explicit treatment of interfaces. This is especially di�cult in the case of 3D problems, since the combination
of nodes into Lagrangian boundary cells is de�ned by lists, and these lists would have had to be continuously
updated. Additional di�culties would have arisen because of unacceptable Courant's restrictions for the
time step in the case of too close approach of the Lagrangian nodes. Similar di�culties are characteristic of
the Lagrangian approach when applied to the modeling of fragmentation processes (for example, separation
of a liquid drop).

These di�culties in tracking the interfacial boundaries can be overcomed by utilizing Eulerian and
Eulerian-Lagrangian front-tracking algorithms. In the broad interpretation of this review, these algorithms
are treated as contact algorithms.
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Reviews of Eulerian front-tracking algorithms. Eulerian methods for through calculation of contact
discontinuity form a speci�c rich world of algorithms and deserve a separate review. In the present review,
these methods are described brie
y. Other bibliographies of publications on the Eulerian contact algorithms
can be found, for example, in [59, 76, 151, 152, 189, 214, 292, 358, 460, 462, 463, 494, 536, 537, 564, 584].

Characteristic of this group of contact algorithms is that the calculation is performed on an Eulerian
(�xed) grid (often uniform and rectangular), which contains the contacting material bodies and media with
margin, and that the contact boundaries (common boundaries of media and bodies, free boundaries, and
phase change boundaries) are tracked by means of Lagrangian discrete or continuous markers. Sometimes,
an Eulerian-Lagrangian arbitrary moving (dynamically adaptive) grid is utilized instead of an Eulerian grid.

The velocity �eld calculated on an Eulerian grid is utilized for calculating the motion of discrete or
continuous Lagrangian markers on the basis of the transport equations in the Lagrangian (for discrete
markers) or Eulerian (for continuous markers) form.

Discrete Lagrangian marker algorithms form a large family that involves the basis algorithms for the
particle-in-cell method [266], the boundary marker method [449], and the marker-and-cell method [436, 443,
574, 575, 591]. In these algorithms, mass, momentum, and energy is transported by particles, while the
markers serve for the identi�cation of the interfaces and the motion of the phases.

Cited above marker-and-cell algorithms deal with 
uid-
uid interactions and free boundary motion.

Versions of the marker-and-cell method for contact of elastoplastic bodies are presented in [199, 322].

In the case of discrete particle and marker methods when dealing with complex boundary conditions
(e.g., friction, surface tension, and phase change), one has to use boundary Lagrangian cells to determine
the geometry of contact (interfacial and free) boundaries. The boundary Lagrangian cells enable one to
calculate normals, tangents, and curvatures of the interfacial surface to formulate the boundary conditions.
As was the case for purely Lagrangian grid algorithms, such a Lagrangian description of the boundaries
encounters considerable di�culties when identifying disappearing or arising boundaries. Therefore, the
particle and marker methods are good while simple boundary conditions (which do not require calculating
the geometrical characteristics of the contact boundary) can be utilized.

Besides, the particle and marker methods strike with problems of correct description of the boundary
markers motion, problems of maintenance of conservation laws near boundaries, problems of insu�cient
number of markers or particles in rarefaction regions and problems of the generation and removal of markers
at open boundaries. These problems can be solved in principle, but complication of the algorithms can lead
to an unacceptably large number of operations.

Continuous Lagrangian marker methods enable one to simplify the description of boundary conditions
and physical phenomena at the contact boundaries and the identi�cation of these boundaries. This is
especially important in the cases of variable topology of the subdomains occupied by various phases, when
the phases merge or separate. The type of the medium is identi�ed by the values of functions of continuous
Lagrangian markers that remain constant along Lagrangian trajectories. These functions obey Eulerian
transport equations. The interfacial boundaries are de�ned as an equal level surfaces of the marker functions.
The same method for describing boundaries has been adopted, for example, for describing coast lines in
cartography.

Various versions of continuous Lagrangian marker algorithms based on the continuous marker concept
are presented in a number of publications, some of which are cited below.

The large particle method has been applied for interfacial boundary tracking in [103, 104, 283]. In these
publications, the boundaries between the heavier and lighter media are identi�ed by the level surface of the
density.

In the volume-of-
uid method [103, 104, 283, 424], pseudo-concentration method [572], and scalar equa-

tion method[318], interfacial boundaries are identi�ed by the level surfaces of the volume concentrations or
\color" functions of various media.

In level set methods [174, 380, 461, 463, 464, 536{539, 561, 562], the interfaces are tracked by the level
function that indicates the distance to the interfacial boundary.

The idea of boundary tracking based on the concentration or domain function has been described also
in publications on the through calculation of the boundaries [176, 456, 531], �ctitious domain method [108],
and R-function method [492, 519].

The method of continuous markers that take on certain constant values for each of the contacting media

9



A review of contact algorithms

(i.e., have a shape of the Heaviside step function) su�ers from interface blurring due to numerical di�usion.
The zone of jump change of the continuous marker function from one value to another at the interface
gradually increases, which is accounted for by errors in the numerical solution of the Eulerian transport
equation for the continuous marker.

This di�culty is not encountered in the level set method applied to a slowly changing marker function
based on the distance to the interfacial boundary, since the accuracy of the solution of the Eulerian transport
equations for this slowly changing function is much higher.

Nevertheless, conservation laws are violated near the interfacial boundary for all marker (discrete and
continuous) methods and, therefore, some additional techniques to control and correct the solution are
necessary [219].

As compared with particle methods and discrete marker methods, continuous marker algorithms enable
one to calculate normals, tangents, and curvatures of the contact surface in terms of derivatives of level
function in Eulerian cells containing the boundary surface, thereby simplifying the computational procedure.
The corresponding mathematical expressions for the geometrical characteristics can be utilized in boundary
conditions on contact interfaces. These boundary conditions can express, for example, Stephan's law, or
force conditions for pressure, friction, and surface tension.

In many cases, marker methods solve problems that have failed to be solved by methods implying explicit
description of contact boundaries. This is the case, for example, for multiple contact or phenomena with
variable topology of material subdomains (e.g., breaking waves, fountains, fragmentation of bodies during
fracture, drop separation or merging, �lling reservoirs, bubbles, and cavitations).

Eulerian methods for through calculation of a contact are especially e�cient for transient processes, in
which case the errors that violate conservation laws and blur boundaries do not have enough time to become
noticeable. This is the case, for example, for impact phenomena with velocities close to that of the sound
velocity, detonation, explosion, cumulation, explosion welding, and transient motions of liquids with free
surfaces. Note that because of the accumulation of errors in the boundary conditions, the solution accuracy
provided by through calculation Eulerian algorithms is frequently insu�cient for acceptable modeling of con-
tact phenomena in materials with clearly pronounced hyperelastic properties that characterize the resistance
of the material subjected to long-term, slow, low loading. In the case of modeling long-term processes, a loss
of accuracy can be observed.

Shock capturing algorithms have been developed for through calculations of discontinuous solutions in
Eulerian algorithms of hydromechanics. These algorithms can be applied together with Lagrangian marker
methods to increase the accuracy of the numerical integration of the transport equation when tracking
interfacial boundaries and contact discontinuities. To familiarize oneself with shock capturing methods,
one can turn to reviews and outlines presented in many modern publications on the numerical methods
for calculation of compressible 
ows, e.g., [76, 378, 610]. The further re�nement of the solution near the
interfacial boundaries can be achieved by applying adaptive grids.

Adaptive grid algorithms reduce the approximation errors of grid methods in high-gradient regions by
means of local reduction of the grid step, optimization of the cell shape, and adaptation of grids to subdomain
boundaries and solutions, in particular, to discontinuities and boundary layers. Such an approach has been
suggested by the analysis of grid approximation errors. This analysis shows that these errors are proportional
to the norm of the derivatives and a certain power of the characteristic step of the grid and increase in case
of the appearance of salient points or distortions in the grid cell shape [558].

The development of the moving adaptive grid method is dealt with in [89, 121, 153, 214, 224, 244, 281,
294, 295, 305, 361, 407, 411, 412, 563, 577]. In these publications, the reader can �nd more comprehensive
analysis and review of investigations related to the method. Characteristic of such algorithms are the
preservation of the number of grid nodes during the solution and increase in the accuracy due to an optimal
arrangement of the nodes (adaptation).

An approach to the description of contact boundaries based on local re�nement and reconstruction of
grids (adaptive mesh re�nement method) is presented and discussed in [79{81, 102, 214, 415, 573, 589]. In
this method, the number of the grid nodes and cells is variable.

10. From mesh-based algorithms to meshless ones

A tendency to avoid complications associated with the construction of grids and to design a more
economic and simple technique for the numerical solution has led to two extensive �elds in the development
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of contact algorithms. One of these �elds deals with boundary element (boundary integral equation) methods,
and the other with a large family of meshless free point algorithms.

The boundary element algorithms have been considered in [6, 7, 78, 144, 171, 190, 226, 227, 367, 368].
The boundary element methods are based on the reduction of the classical linear equations of continuum
mechanics to boundary integral equations by representing solutions of these equations as the superposition
of fundamental solutions corresponding to unit excitations or by using Green's in
uence functions. The
discretization of these equations does not require a volume grid; it su�ces to introduce a grid of boundary
elements, which reduces the dimension of problems to be solved by one. In a number of algorithms, the stage
of the derivation of the boundary integral equations is omitted and the discretized equations are derived
straightforwardly on the basis of the fundamental solutions for unit excitations [61, 141, 494].

In nonlinear problems, the solution is constructed by means of external iterations with respect to
nonlinear terms. At each iteration, a linearized problemwith the classical linear operator is solved. The right-
hand sides of these equations involve the nonlinear terms calculated on the basis of the previous iteration.
Di�culties arising in this approach are associated with the necessity to calculate volume integrals on the
right-hand sides, which requires a volume grid to be introduced, as well as with catastrophic deterioration
of convergence of the external iterations as the in
uence of nonlinear terms increases.

Free Lagrangian discrete algorithms are an attempt to avoid di�culties associated with the distortions of
the cells of moving grids when tracking the interfacial boundaries. To that end, the grid is reconstructed step
by step with variable neighborhood of grid nodes [2, 12, 159, 160, 214, 218, 438, 481, 583]. The conservative
interpolation of the solution on moving grids with variable topology is a nontrivial operation. An algorithm
for this operation has been proposed in [2].

Meshless contact algorithms are the further step to the rejection of grids for free Lagrangian nodes
(markers/particles). These algorithms are based on the Galerkin{Petrov method with speci�c basis functions.
These functions are not compactly supported but decay rapidly. The basis functions are constructed with
the arrangement of the Lagrangian nodes (particles) being taken into account. (The uni�cation of the nodes
into cells is not required.) The development of these algorithms can be traced by [71, 72, 125, 127, 168, 215,
408, 413, 414, 429, 438, 458, 459].

In the �rst studies, Gaussian numerical integration procedures were utilized to derive the system of
equations for the discrete problem. This caused certain computational di�culties. Improved numerical
integration algorithms (stabilized conforming nodal integration (SCNI) algorithms) are presented in [127].
A simpli�cation of the derivation of equations for the discrete problem is based on the collocation method,
which corresponds to the utilization of projection basis of delta-functions.

At the present time, meshless methods have started successfully competing with the traditional grid
methods when utilized for the numerical modeling of contact in the case of large deformation and complex
rheology [255, 319, 630] and in th case of complex 
uid-structure interactions [458, 459].

11. Taking into account contact friction.

In many technological problems, taking into account contact friction plays a decisive role. This is the
case, for example, for the modeling of the operation of automotive brakes. For reviews of numerical-analytical
methods to taking into account friction, see [5, 84, 205, 234, 237] and the book of reviews [587]].

Consider typical models of contact friction that are utilized in discrete numerical algorithms. Note
�rst the modi�cation of Coulomb's friction classical model [433], in which friction forces are constrained
by limiting values of the tangential stresses sustained by the contacting media. In accordance with this
model, the contact shear stress is constrained by the lower of the yield stresses of the contacting materials.
This concept has been developed in detail in [601]. In accordance with the model of [601], the tangential
jump of the displacement is divided into the microdisplacement, due to contact elastic strain, and the
macrodisplacement, due to plastic (irreversible) smooth of the roughness.

A second example of the friction law which is frequently utilized is the dynamic (viscous) friction model,
in which friction contact loads depend on the jump in the tangential velocity [452]. A detailed analysis of
friction laws for calculating large strains is given in [130].

For the description and review of contact algorithms that take into account friction see [14, 15, 41, 75,
76, 91, 93, 95, 107, 116, 123, 124, 128, 134, 199, 251, 304, 317, 328, 331, 338, 364{366, 369, 383, 386, 387,
395, 401{403, 409, 560, 566, 623, 626].

Publications [38, 45, 46, 120, 175, 183, 184, 320, 321, 452, 467, 468] are devoted to the modeling of
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contact processes with rolling friction. The general Eulerian-Lagrangian approach to rolling is presented in
[403].

12. Reviews of problem-oriented contact algorithms.

In this section, we indicate reviews and separate papers that deal with problem-oriented contact algo-
rithms adapted to speci�c applications.

Animation contact algorithms utilize simple non-iterative explicit methods which do not imply the laws
of mechanics to be observed and satisfy the impenetrability constraints by means of heuristic approaches
to provide a minimum plausibility for the result. The animation algorithms are aimed at the creation of
a cartoon (of dinosaur �lm type) to vizualize contact phenomena. A distinctive feature of the animation
algorithms, as compared with continuum mechanics algorithms, is that the former algorithms should allow
the animator to change the scenario of motion of the contacting bodies and media when creating the cartoon.
As an example of algorithms of that type, one could mention the free shape deformation algorithm [534] and
the algorithm for imitating the skin/skeleton deformation [406]. For more detail see the review of [54].

Contact algorithms for applications in medicine and biology. A more proximate approach to reality
is necessary in medicine for modeling surgical operations, designing training programs, and predicting the
results of plastic surgery. These goals can be achieved by models that partly satisfy the laws of solid
mechanics and take into account the strength properties of materials [166, 239, 343].

These simpli�ed models should be replaced by full-scale contact algorithms (developed within the frame-
work of continuum mechanics) as the desired degree of agreement between reality and the model increases.
Continuous increase in the productivity of computers favors the intensi�cation of research on the development
of algorithms for modeling the motion of living bodies, with the complex internal structure of these bodies
being taken into account. However, there have been very few such works so far and they utilize rather simple
mechanical models. Mechanical properties of living bodies have been considered in [203]. The animation of
contact interactions of elastic bodies for applications in medicine has been attempted in [34, 435, 570, 631].
Reviews of contact algorithms that can be applied in medicine are given in [280, 342].

For a review of contact algorithms for geomechanics see [439], for 
ows with free moving boundaries
[25, 197, 213, 305, 427, 543, 552, 571, 605, 622], for phase change boundaries [299, 567, 581], for thermal
e�ects [540], for cavitation [592], and for modeling of the behavior of cloths [35]. The publications of
[536, 538], on the contact tracking on the basis of level set function methods deserve special attention in
view of astonishing variety of applications.

13. Contact interaction optimization algorithms.

In the general case, the distribution of the contact loads is nonuniform and depends on the shape of
the contact surface. The contact loads can have undesirable peaks which make worse the characteristics
of technological processes and reduce the life time of engineering products. One of the �rst attempts to
make the load distribution more uniform by means of optimizing the shape of the contact surface was done
in [139]. The optimization was performed on the basis of linear programming. This theme was developed
in [271] where the linear programming was utilized in combination with the �nite element method. In
[56, 132, 135, 475], the optimization was performed on the basis of nonlinear programming. Objective
functions for the optimization of contact surfaces were proposed in [179, 180].

A simpli�ed iterative procedure for smoothing peaks of the contact loads for constant volume of the
contacting bodies was proposed in [565]. The further simpli�cation was provided by the evolutionary struc-
tural optimization (ESO) algorithm. This algorithm was proposed in [606, 607] and can be applied to a wide
class of contact optimization problems.

All optimization problems solved in the cited publications have been considered for the cases of rather
simple rheology (linear isotropic elasticity) and geometry (2D static problems for two contacting bodies) and
have illustrative character. This direction is at the development stage yet [535].

14. Vectorization and parallelizing of contact algorithms.

Discrete models for the analysis of contact interactions in complex structures involve a very large number
of nodes. To obtain solutions for such models in a reasonable time, the utilization of vector and multiprocessor
computers can be of help. For that reason, many studies related to contact problems have been devoted
to vectorization and parallelizing of the available contact algorithms. Issues of the vectorization of contact
algorithms were considered in [92, 93, 95, 217, 256, 259, 261].

Parallel computers of various types were tested in the 1980{90s. At the present time, the most suitable
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for parallelizing algorithms for solving mathematical physics problems are developed for distributed memory
MIMD (Multiple Instruction, Multiple Data) computers, see [453, 512]. Various parallelizing techniques|
grid node group decomposition, element group decomposition, and domain decomposition|have been tested.
The domain decomposition method (DDM) turned out to be most convenient. For the fundamentals of this
method as applied to contact problems, see [114, 185{187, 417, 453].

The �ctitious domains formed in accordance with the domain decomposition method have overlapped
boundaries on which the solution must be continuous. This continuity is provided by the exchange of the
boundary data between the processors during the iterative process. The conjugate gradient method turned
out to be one of the most e�ective and convenient for parallelizing and vectorization. The application of this
method to contact problems has been dealt with in [92, 93, 95, 422, 425, 453, 611, 612].

Considered above contact searching algorithms (such as global LPOCA, HITA and local pinball, master{
slave, etc.) primarily are not intended for use in parallel computing and their implementationmay su�ciently
dismiss the pro�t in performance expected. In parallel codes the contact surface is represented as a set of
boundary subdomains, which are processed by using additional processors, which are di�erent from those
used for interior subdomains (see,[285, 453]). Parallelized contact algorithms are presented also in [20, 21,
216, 418, 419, 496].

The highest performance of computations achieved for 2001 by means of parallelizing of high-speed
impact contact problems was due to a state research organization Sandia National Laboratories (SNL) in
the USA. This record has been established by running the parallelized software package PRONTO on the
Intel Tera
op Computer (3600 processors). A speed of 1/10 second per time step was achieved for models
with the number of 3D 8-node �nite elements exceeding 10{15 million. A number of test problems have been
solved, from simple tests to an important practically problem of an aircraft crash, with the deformation in
the aircraft structure, fuel hydrodynamics (particle method), and the ground deformation being taken into
account. The last problem has been hopeless to be solved numerically until recently. In this problem, all
contact phenomena that have been discussed previously (including self contact and multiple contact) and
through calculation method have occurred. This record computation is presented in the SNL report [22].

Taking into account an intensive development of parallel computers, changes in their architecture and
software, and possible expansion into the PC world, one could anticipate the issue of the adaptation of
contact algorithms to parallel computers to become rather topical in the nearest time.

On the other hand, one should not overestimate the value of this direction. The point is that the
share of parallel computers among the available computer park has been rather small so far and that such
computers have been utilized in a remote access mode. This sharply increases the time of waiting for the
solution and creates a paradoxical situation. Formally, the time of computation is sharply reduced but in
fact for particular user this time may be even increased because of small speed of data transfer through
a network and because of possible competition between users, since parallel computers are multiple-user
shared computers. As compared with the traditional scalar programming, the parallelizing of codes requires
much more e�ort and cardinal reprogramming and revision of common scalar algorithms. Therefore, to be
a success the parallelizing requires high-performance hardware and a powerful �nancial support, which is
feasible only for large research centers working under large-scale state contracts.

When planning work on the parallelizing of contact algorithms, one should also take into account
temporal characteristics, speci�cally, the life time of the parallel computer and its software, the time required
for the development of the parallel version of the code, and the time during which the parallel computer can
be regarded as a supercomputer. The last remark is due to the fact that scalar computers (including PCs)
are also rapidly developing and very often can compete in all aspects with many types of parallel computers
that until recently had been acknowledged to be supercomputers. For example, a comparison of a modern
PC Pentium/4 with a ten-years-old parallel "8-head" Parsytec will hardly be in favor of the latter.

15. Accuracy analysis and comparison of contact algorithms.

Virtually all contact algorithms provide only approximate solutions. An important aspect of research
related to contact algorithms involves the investigation of the accuracy of such algorithms and a priori/a
posteriori analysis of errors of the numerical solution. It should be noted that this direction has not been
thoroughly developed yet. For the evaluation of the accuracy of Lagrangian algorithms, see, for example,
[23, 24, 55, 400, 401, 403, 541, 580, 585, 633]. A review of publications on the evaluation of the accuracy of
the Eulerian continuous marker algorithm is given in [115].
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Comparative analysis of various approaches is complicated by the fact that the success or failure of a
contact algorithms is in
uenced by the quality of the code and speci�c features of the algorithms that have
not been documented. Unfortunately, there have been only few publications so far in which the same authors
compare various approaches. Comparisons that have been performed at the same \kitchen" provide clearer
and more de�nite results. The point is that a minor feature of the algorithm that seems to be unimportant at
�rst sight and has not been mentioned in papers and reports can frequently play a decisive role in the success
or failure of the entire algorithm. This is not due to malicious intent of the authors to "keep secret" but
most frequently because of a plenty of components of the algorithm and ambiguity of possible formulations
of it.

Paper [509] can serve as an example of classic comparative analysis of contact algorithms. In this
paper, the quality of numerical modeling of contact discontinuities by means of various through calculation
methods is assessed on the basis of the solution of four test transport problems for a speci�c distributed
scalar substance in prescribed steady velocity �elds. These �elds correspond to simple translation, rigid-body
rotation, an isolated vortex, and a complex strain. Four methods have been tested|the most recent version
of the marker-and-cell algorithm, the 
uid-in-cell method, the level set method, and the shock capturing
methods such as TVD and ENO. These methods are arranged from better to worse as they have been listed
above. The continuous marker method has been improved in [174] by means of the new Hybrid Particle
Level Set (HPLS) method which combines the discrete and continuous Lagrangian marker techniques in a
single algorithm.

Among the publications related to critical analysis of contact algorithms there is a very interesting
lecture [315] which presents an ironic collection of typical samples of author partialities in self-estimations
of merits of developed codes for continuum mechanics: \it will solve your problem without modi�cations";
\the manual has everything you need to run the code"; \standardized graphics output, compatible with
third party post-processors"; \minimal learning curve"; \executable on all machines with no modi�cations";
\robust and accurate"; \all physics are compatible"; \user friendly"; \there are no more bugs in the code,
only undocumented features"; \you can run the code without the manual"; \the technique was �rst developed
here". It is hardly possible to contest this criticism. The very fact of simultaneous existence of numerous
contact algorithms indicates that these algorithms are not perfect. The author assessments of algorithms
and results that appear in papers should be considered very carefully.

16. Conclusion.

There are many hundred works on numerical methods of analysis of contact interactions that have been
published in the world during the last 3 or 4 decades. We con�ned our review to publications on contact
algorithms. If we had included, in addition, studies on the physics of contact and publications on solving
particular problems, the list of bibliography would have consisted of several thousand items and the length
of the review would have exceeded all reasonable limits.

This review can be used as a guide in contact algorithms. It should facilitate the choice of an appropriate
algorithm and help one to assess the novelty of newly designed algorithms and to select publications for more
detailed study and citing.

Although a great number of contact algorithms have been designed, the basis concepts of these al-
gorithms can be comprehended and classi�ed. One possible classi�cation has been presented in the given
review. This classi�cation is not optimal but has been suggested by the material to be sorted.
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