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1 Introduction

Numerous astrometric studies are based on the dynamic theory of the Earth’s
rotation with respect to the center of mass [1–5]. It is known from astronomical
observations (since the second half of the 19th century and possibly much earlier)
that the Earth’s rotation axis varies through time in both Earth-fixed and inertial
reference frames. This means that the poles and latitudes evolve noticeably within
a year.

Measurements indicate that this rather complex oscillatory process contains
components with very diverse frequency and amplitude characteristics. For example,
the small oscillations of the angular velocity vector in an Earth-fixed reference
frame contain the main component with an amplitude of 0.20′′–0.25′′ and a
period of 430–440 sidereal days [1–4]. The considerable difference between the
Chandler period and the period predicted by the classical theory of rigid bodies
(the Euler precession period of 305 days for the rigid figure of the Earth) required
an explanation. An explanation was partially given on the basis of a model
of deformable Earth in the studies of W. Thomson, S. Newcomb, H. Poincaré,
H. Geoffreys, A. Love, F. A. Sludskii, M. S. Molodenskii, et al. [4]. Traditionally,
this motion is referred to as the free nutation of the deformable Earth or the
Chandler wobble of the pole (to be definite, of the North pole).

There is also a noticeable component with an amplitude of 0.07′′–0.08′′ and a
pronounced period of one year (about 365.25 sidereal days). The observed pole
oscillations have a wobbling character. The trajectory of the pole on the Earth’s
surface is a winding and unwinding spiral with a period of about six years.

Analyzing the pole trajectory and predicting its motion are of substantial
interest in both scientific and applied aspects. The construction of a high-precision
theoretical model of the deformable Earth’s rotation, the identification of model
parameters on the basis of IERS data, and a reliable prediction of the pole motion
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are very important in inertial navigation problems [6] on time intervals sufficiently
large for practical purposes and in a number of astrometric and geophysical
problems [1–5].

Let us give some remarks concerning the statement of the problem. To describe
the rotation of the deformable Earth and the polar motion, we use the mechanical
model of a viscoelastic solid [7]. The Earth is represented as a two-layer planet
consisting of an absolutely firm rigid core (a ball) and a viscoelastic mantle.
Considering a more complicated model of the figure of the Earth is unjustified,
since in this case one would not be able to determine the necessary physical-
mechanical characteristics of the planet on the basis of measurements with the
accuracy needed. The authors stick to the obvious postulate that the complexity
of a model at all stages of its construction should be strictly adequate to the
problem to be solved and the accuracy of observation data.

From the viewpoint of theoretical mechanics, the analysis of oscillations of the
Earth’s pole is similar to the study of motions of the gyro axis under perturbing
torques with viscoelastic strains taken into account in the quasistatic approximation.

At the initial stage of the analysis of the polar motion under perturbing torques,
we consider the three-dimensional version of the two-body problem [7, 8]. We
assume that the center of mass of a deformable planet (Earth) and a point satellite
(Moon) perform a known rotatory-progressive motion around a common center
of mass (barycenter), which moves on an elliptic orbit around the Sun.

In what follows, on the basis of an asymptotic analysis of the equations of
motion in the osculating action-angle variables, we determine stable characteristics
of the rotatory-progressive motion of the deformable Earth with respect to center
of mass in the quasistatic approximation. First, we find the refined periods (frequencies)
of the axial rotation and the Chandler wobble and make a comparison with
the spectral analysis data [1–3]. Estimates of the free oscillation amplitudes of
the angular velocity vector in the Earth-fixed reference frame are given, and we
compare them with the observed values.

Using the kinematic and dynamic Euler equations, we construct a mathematical
model of the first approximation to the Chandler wobble. In conclusion, we
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numerically determine the parameters of motion by the least squares method
on the basis of daily IERS measurement data [2], construct the trajectory, and
predict the polar motion, comparing the results with the IERS experimental data.

2 The first-approximation mathematical model of polar oscillations

To construct a model of the rotation with respect to the center of mass, we
represent the equations in the form of the classical Euler dynamic equations with
variable inertia tensor J [1, 3–5, 7–9]:

Jω̇ + ω× Jω = M, ω = (p, q, r)T , J = J∗ + δJ, J∗ = const

J∗ = diag(A∗, B∗, C∗), δJ = δJ(t), ‖δJ‖ � ‖J∗‖
(2.1)

Here ω is the angular velocity vector in an Earth-fixed reference frame [4] approxi-
mately coinciding with the principal central axes of inertia J∗ of the “frozen” Earth
with regard to the “equatorial bulge” [1–5, 7]. The additional perturbing terms
obtained by the differentiation of the deformable Earth’s moment of momentum
(see [8, 9]) are included in the perturbing torque M of rather involved structure.
It is considered that small variations in the inertia tensor δJ can contain various
harmonic components caused by gravitational diurnal tides from the Sun and
the Moon as well as possibly other components (annual, biannual, monthly, and
semidiurnal). The main ingredients in the external perturbing torques M causing
nutation oscillations are assumed to be gravitational. The possible presence of
terms like J̇ω does not result in a refinement of the first-approximation model.
Attempts to estimate these terms rigorously by taking into account geophysical
factors are difficult and have not so far produced satisfactory results. The analysis
of their effect in the existing literature is often completely speculative and scholastic,
for it is not related to the actual determination of the torques (their amplitudes,
direction, and frequency and phase characteristics).

The Euler kinematic equations determining the orientation of the Earth-fixed
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axes with respect to the orbital reference frame have the form [10]

θ̇ = p cosϕ− q sinϕ− ω0(ν) sinψ, ν̇ = ω0(ν) = ω∗(1 + e cos ν)2

ψ̇ =
p sinϕ+ q cosϕ

sin θ
− ω0(ν) ctg θ cosψ, e = 0.0167

ϕ̇ = r − (p sinϕ+ q cosϕ) ctg θ + ω0(ν)
cosψ
sin θ

(2.2)

Here ν(t) is the true anomaly, e is the eccentricity of the orbit, and ω∗ is
a constant determined by the gravitational and focal parameters. The analysis
of system (2.1), (2.2) reveals that in the situation corresponding to the polar
motion the terms proportional to ω0 in Eqs. (2.2) prove to be much larger than
p and q (approximately by a factor of 300) and are determining for θ̇ and ϕ̇.
This important property is not mentioned in scientific literature, and the above-
mention terms were neglected without due justification (the orbital and rotatory
motions were separated) [1–5].

Let us calculate the annual component of forced oscillations of the Earth’s pole.
The expressions for the components of the gravitational torque exerted by the

Sun have the following structure [9]:

Mq = 3ω2 [(A∗ + δA− (C∗ + δC))γrγp + δJpqγrγq+

+δJpr(γ
2
r − γ2

p)− δJrqγpγq

]
, ω = ω∗(1 + e cos ν)3/2

γp = sin θ sinϕ, γq = sin θ cosϕ, γr = cos θ

(2.3)

To compute Mp,r, one makes a cyclic permutation of the subscripts p, q, and r

in (2.3). It follows from the analysis of (2.3) that the annual component of polar
oscillations can be caused by the term containing the products γpγr and γqγr of
direction cosines. To compute them, we integrate Eqs. (2.3) in the first approximation:

r = r0, ϕ ≈ rt+ ϕ0, ν ≈ ω∗t+ ν0, cos θ(ν) = a(θ0, ψ0) cos ν

θ(0) = θ0 = 66◦33′, 0.4 ≤ a ≤ 1, 0 ≤ ψ0 ≤ 2π

cos θ sin θ = b(θ0, ψ0) cos ν + d cos 3ν + . . . , 0.4 ≤ b ≤ 4
3π, |d| � 1

(2.4)

The second and higher harmonics with respect to ν result in quantities smaller
than the leading terms by a factor of 102–103 and hence are not taken into account.
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Next, B∗ − A∗ is also substantially smaller than C∗ − A∗ (approximately by a
factor of 160). By estimating the terms for p and q in Eqs. (2.1), by taking into
account the expressions (2.4), and by averaging with respect to the fast phase ϕ,
we obtain a simplified analytical model of the form

ṗ+Npq = æqr
2 + 3bω2

∗χp cos ν, Np,q ≈ N = 2π/T1 ≈ (0.84− 0.85)ω∗

q̇ −Nqp = −æpr
2 − 3bω2

∗χq cos ν, p(0) = p0, q(0) = q0

(2.5)

Here κp and κq are the mean values of δJpr/B
∗ and δJqr/A

∗, which can be slow
functions. The coefficients χp and χq are obtained by averaging the coefficients of
cos ν in the Sun’s gravitational torque components with respect to ϕ, and χp =

χq. As was already indicated, they are due to diurnal tides. The effect of the
Moon’s gravitational torques on nutation oscillations is relatively small owing to
a significant difference in frequencies, and these torques are not taken into account.
The right-hand sides of Eqs. (2.5) explicitly contain a harmonic term with a period
of one year, which explains the mechanism of the nutation oscillations observed in
the IERS records. Although the sensitivity of the coefficients κp,q is by five orders
of magnitude higher than that of χp,q, the explicit regular mechanism of annual
force-torque action by internal (atmospheric, oceanic, and seasonal) geophysical
factors with estimated amplitude Mh ∼ 102 kg·m2s−2 seems to be unfounded
from the viewpoint of mechanics. The frequency analysis of the annual oscillations
component also suggests that the geophysical interpretation is unsound [1].

The problem of constructing a gravitational-tidal oscillation mechanism with
period sufficiently close to the Chandler period requires a separate investigation.

3 Numerical simulation results for the interpolation and prediction
problems

It is of interest to study the efficiency of the interpolation and prediction of the
polar motion by the remarkably simple mathematical model
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x(τ) = (ξ, f(τ)), y(τ) = (η, f(τ))

ξ = (ξ1, . . . , ξ6)
T , η = (η1, . . . , η6)

T

f(τ) = (1, τ, cos 2πΩτ, sin 2πΩτ, cos 2πτ, sin 2πτ)T , Ω = 0.845

(3.1)

on the basis of known IERS daily data [2].
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Figure 1 shows the theoretical curves x∗(τ) and y∗(τ) interpolating the daily
measurements on the eight-year interval 0 ≤ τ ≤ 8 from 1988 to the end of
1995; open symbols indicate the measurement data. The standard deviations are
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σx = 0.014 and σy = 0.017, which shows that the model (3.1) corresponding to
the optimal values ξ∗ and η∗ has satisfactory accuracy, where

ξ∗ = (−0.041,−0.0004,−0.034, 0.194,−0.023,−0.065)T

η∗ = (0.300, 0.005, 0.193, 0.033,−0.060, 0.020)T
(3.2)

The comparison of the coefficients ξ∗3 and η∗4 as well as ξ∗4 and η∗3, determining
the Chandler components of the oscillations, and also ξ∗5 and η∗6 as well as ξ∗6 and
η∗5 (with regard to the factor Ω = 0.845), corresponding to the annual component
in (3.2), confirms the above-mentioned structural property of the model (3.1).
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The IERS tries to provide forecasts of the polar motion for 100–150 days
ahead in the annual reports [2] and on the basis of current data (IERS, EOR
Product Center, http://hpiers.obspm.fr/eoppc/eop/eopc04/eopc04-xy.gif). They
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use their own model and technique, which result in a considerably imprecise and
unstable forecast requiring weekly correction. The difference between forecasts
can be comparable with the maximum deviation of the pole.

Figure 2 shows the authors’ interpolation of observed polar motion on an eight-
year interval of IERS daily observations (2000–2007). The corresponding optimal
values and standard deviations are

ξ∗ = (0.0407, 0.0032, 0.2306, 0.1205,−0.6452,−0.7881)T , σx = 0.1029

η∗ = (0.3282, 0.0040, 0.1222,−0.0288,−0.0746, 0.0593)T , σy = 0.09597
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