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Abstract

Classical gas dynamic equations describe mean motion of stochastic gas
molecules. The reason of this stochasticity is interaction (collisions) between
molecules. The wave function is the way to describe the gas dynamic equations
[3]. If a gas molecules interact via some force field κl, the gas dynamic equa-
tions have the form of the Klein-Gordon equation provided they are written
in terms of the wave function. Among two possible approaches: (i) quantum
mechanics (QM) as axiomatic conception and (ii) QM as a kind of gas dy-
namics the second approach is more preferable, because in the first approach
the wave function looks as a strange axiomatic object, whereas in the second
approach the wave function is a natural way of the gas dynamics description.
Besides the second approach admits one to obtain a more complete description
of stochastic particles.

Key words: wave function as attribute of gas dynamics; interaction changing
molecular mass; quantum mechanics without quantum principles

1 Introduction

Fluid dynamics and, in particular, gas dynamics are considered usually as a tool for
calculation of fluid flows. Ludvig Boltzmann had suggested another interpretation of
the gas dynamics. He considered the gas dynamic as a tool for statistical description
of stochastic gas molecules. At first the pragmatic scientific community did not
accept such interpretation of the gas dynamics. However, some time later, the
kinetic Boltzmann’s equation formed a basis of a mathematical theory of gases [1].
Classical gas dynamic equations describe a mean velocity of gas molecules. Kinetic
equation gives a more complete statistical description of stochastic gas molecules.

Conventional statistical description of deterministic particles is produced usually
in terms of a statistical ensemble. The statistical ensemble is a set of many inde-
pendent identical particles. In other words, the statistical ensemble is a collisionless
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gas. If the particles of such an ensemble interact between themselves, motion of
particles may be stochastic (nondeterministic). Such an ensemble is not considered
usually as a statistical ensemble. But ensemble of identical interacting particles can
be considered as a statistical ensemble, if the statistical ensemble is considered as a
basic object of the particle dynamics (instead of a single particle). See [2] for details.
Statistical ensemble with interacting identical particles is a gas. Molecules of this
gas move stochastically. The form of the stochasticity depends on the form of the
molecular interaction.

It is very important, that elementary particles can be considered as classical
nondeterministic (stochastic) particles. Statistical description of these particles is
carried out by means of gas dynamics. Such a description is more natural, than
conventional quantum description in terms of a wave function, because the wave
function is a natural attribute of fluid dynamics [3], whereas the wave function is
a strange axiomatic object in the framework of conventional quantum mechanics.
This circumstance leads to numerous interpretations of quantum mechanics. These
numerous interpretations are conditioned by the fact, that a meaning of the wave
function is not clear.

It is well known that the Schrödinger equation can be presented as a description
of an irrotational flow of some fluid [4]. D. Bohm developed a connection between
the quantum mechanics and dynamics of continuous medium (hydrodynamics) [5].
Unfortunately, the connection between the quantum mechanics and hydrodynamics
has been one-sided in the sense, that one could obtain the hydrodynamic description
from quantum mechanics, but one cannot obtain the Schrödinger equation from
hydrodynamical equations. The recent papers by E.Nelson [6] did not change this
situation, although Nelson tried to consider classical stochastic particles. The reason
of such a situation is the fact, that the wave function is an axiomatic object in
quantum mechanics, and nobody does not know, what is a wave function.

Situation changed, when it became known, that the wave function is a description
method of any nondissipative continuous medium [3]. There are three methods of
the gas dynamics equations presentation: (1) Euler presentation, (2) Lagrangian
presentation and (3) presentation in terms of wave function. The last presentation
was not known in the twentieth century. It became to be known only in the end of the
XX century [3]. As far as the wave function is an natural attribute of the continuous
medium dynamics, it seems to be more reasonable to consider classical dynamics of
fluids as a primary conception of quantum mechanics. In quantum mechanics the
wave function is a strange axiomatic object. Then the quantum mechanics will be
a secondary (derivative) conception, describing quantum effects.

The classical gas dynamics can be considered as a natural method of a stochastic
particle description. Indeed, the gas molecule moves stochastically due to interaction
with other gas molecules. This interaction reveals because of molecular collisions.
If there are no collisions, the gas molecules move deterministically. The character
of stochasticity depends on the form of molecular interaction. It turns out that one
can introduce such a molecular interaction, when the irrotational flow of the gas
will be described by the Klein - Gordon equation, if such an interaction between
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molecules takes place. This interaction changes the molecular mass m, converting
it into the effective mass M by means of the relation

m2 → M2 (x) = m2 +
~2

c2

(
gklκ

kκl + ∂lκ
l
)
, ∂l ≡ ∂

∂xl
(1.1)

where κl, l = 0, 1, 2, 3 is some force field and ~ is the quantum constant. Dynamic
equations for the κ-field are obtained from the corresponding action. From these
dynamic equations it follows that the κ-field has the potential κ

κl = glkκ
k = ∂lκ, l = 0, 1, 2, 3 (1.2)

In a usual gas the interaction between molecules is actual in the following sense.
A motion of a single molecule (outside the gas) becomes to be deterministic. If
the gas dynamics is used as a method of description of the stochastic (quantum)
particles motion, the interaction of particles is fictitious in the sense that the motion
of a single particle remains to be stochastic.

The classical gas dynamics describes a mean motion of a molecule. This descrip-
tion is rather incomplete in the sense, that it describes only mean values 〈p〉 , 〈E〉
and 〈p× x〉 of only additive quantities such as momentum p, energy E and angular
momentum p× x. It is connected with the fact that the classical gas dynamic equa-
tions have been deduced from the conservation laws of matter and of momentum. In
that time the molecular structure of the gas was not known. The gas dynamic equa-

tions cannot describe the fluctuation of the molecule energy

〈√
〈E2〉 − 〈E〉2

〉
. To

obtain higher moments of p, one needs to use the distribution function f (x,p). It
can be obtained from the kinetic equation, which takes into account more detailed in-
formation on the molecules interaction (collisions). Ludvig Boltzmann investigated
interaction between molecules (collisions). As a result he succeeded to obtain kinetic
equation describing evolution of the distribution function f (x,p). The distribution
function describes completely the molecular stochasticity.

If formalism of the gas dynamics is used for description of the mean motion of
quantum particles, it admits one to describe only mean quantities 〈p〉 , 〈E〉 and
〈p× x〉. It is incomplete description. To obtain a more detailed information on the
mean motion of a quantum particle, one needs to use a more detailed information on
the κ-field. The distribution function f (x,p) is a nonrelativistic structure, as well
as the phase space, where the distribution function is defined. The quantum particle
is a relativistic particle. The regular component of velocity may be nonrelativistic,
whereas the stochastic component of velocity is relativistic. This circumstance is im-
portant in the relation, that the formalism of quantum mechanics, based on the wave
function formalism, gives only incomplete description of mean motion of a quantum
particle. However, the axiomatic quantum mechanics claims that the description in
terms of wave function is maximally complete. As a result the elementary particles
are described as a pointlike objects, provided with various quantum numbers. A
possible internal structure of elementary particles remains to be unknown.
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The gas, whose molecules interact via the κ-field (1.1), is described by the action

E [Sst] : A [x , κ] =

∫

ξ0

∫

Vξ

(
−mcK

√
glkẋlẋk − e

c
Alẋ

l
)

d4ξ, ẋi =
∂xi

∂ξ0

(1.3)

K =
M

m
=

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, ∂l ≡ ∂

∂xl
(1.4)

where ξ = {ξ0, ξ}, Al is electromagnetic potential and e is the molecule charge. The
variables ξ = {ξ1, ξ2, ξ2} label world lines of molecules, whereas ξ0 is a parameter
along the world line. The motion of gas molecules is stochastic one. Indeed, the
action of a single gas molecule is written in the form (integration over ξ = {ξ1, ξ2, ξ2}
is omitted)

Sst : A [x , κ] =

∫

ξ0

(
−mcK

√
glkẋlẋk − e

c
Alẋ

l
)

dξ0 ẋi =
∂xi

∂ξ0

, (1.5)

If K is defined by (1.4) and κl does not vanish, the action (1.5) is defined incorrectly,
because xk = xk (ξ0) in (1.5) is one-dimensional line, whereas derivatives of κl in K
are defined in the whole space-time. One cannot obtain dynamic equation from the
action (1.5). This means that there are no dynamic equations for a single molecule.
Hence, molecules of the gas are stochastic. However, if there are no interaction
between molecules and κl ≡ 0, then K ≡ 1. In this case the action (1.5) generates
dynamic equations for a single molecule, and the molecule motion is deterministic.

Note, that not any interaction between the gas molecules generates their stochas-
ticity. For instance, electromagnetic interaction between charged molecules of a gas
does not generate stochasticity. In this case instead of (1.3) we have

E [Sd] : A [x] =

∫

ξ0

∫

Vξ

(
−mc

√
glkẋlẋk − e

c
Alẋ

l
)

d4ξ − 1

16πc

∫

Vx

FikF
ikd4x (1.6)

Fik = ∂iAk − ∂kAi (1.7)

The action for a single molecule is obtained from (1.6) in the form

Sd : A [x] =

∫

ξ0

(
−mc

√
glkẋlẋk − e

c
Alẋ

l
)

dξ0 −
1

16πc

∫

Vx

FikF
ikd4x (1.8)

Action (1.8) is defined correctly. As a result action (1.8) generates dynamic equa-
tions for a single particle. Thus, electromagnetic interaction does not generate
stochasticity of molecules in the gas, consisted of charged molecules.

2 Wave function as a method of the gas

description

The complete system of the gas dynamic equations includes seven equations

∂ρ

∂t
+ ∇ (ρv) = 0,

∂v

∂t
+ (v∇)v = −∇p (ρ)

ρ
(2.1)
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dx

dt
= v (t,x) (2.2)

where ρ is the density, v is the velocity and p is the pressure in the gas. Equations
(2.1) form a closed subsystem of the whole system (2.1), (2.2). Ordinary differ-
ential equations (2.2) describe a motion of gas particles in a given velocity field.
Let ξ (t,x) = (ξ1 (t,x) , ξ2 (t,x) , ξ3 (t,x)) be three independent integrals of equations
(2.2). Then three equations

∂ξ

∂t
+ (v∇) ξ = 0 (2.3)

are equivalent to equations (2.2). The dynamic system of seven equations (2.1), (2.3)
is equivalent to the system of equations (2.1), (2.2). Equations (2.3) are ordinary
differential equations, although they have the form of partial differential equations.

The system of equations (2.1), (2.3) can be integrated in the form

∂ρ

∂t
+ ∇ (ρv) = 0, p =b0 (∇ϕ + gα (ξ) ∇ξα) (2.4)

∂ξ

∂t
+ (v∇) ξ = 0 (2.5)

where b0 is an arbitrary constant, ϕ is a dynamical variable, appeared instead of
fictitious variable ξ0, gα (ξ), α = 1, 2, 3 are three arbitrary functions of ξ, and
p = {p1, p2, p3} is the momentum, which is connected with the velocity v by the
relation

pα =
mvα

√
1− c−2v2

, or pα = mvα, α = 1, 2, 3 (2.6)

Details of this integration can be found in [7]. The first relation (2.6) takes place in
the relativistic case. The second one takes place in the non-relativistic case. Arbi-
trary functions gα (ξ), α = 1, 2, 3 can be expressed via initial values of momentum
p. Indeed, if we put t = ξ0 = 0, ξ = x, ϕ (x) = 0, the second Eq.(2.4) takes the
form

pα (0,x) = b0g
α (x) , α = 1, 2, 3 (2.7)

Integration (2.4) was produced by Clebsch for incompressible fluid [8, 9]. Integration
(2.4) does not depend on the form of the internal energy of the gas, or on the form
of the pressure p (ρ).

Let us note that the close subsystem of four equations (2.1) cannot be integrated
in the form (2.4). It is a reason, why the Clebsch potentials (2.4) have not be
used for a long time. Most researchers considered the closed subsystem (2.1) as a
complete system of gas dynamic equations on that reason that the system (2.1) is a
closed system of differential equations.

The wave function ψ = {ψα}, α = 1, 2, . . . , n is a n-component complex function.
It is constructed of Clebsch potentials by means of relations

ψα =
√

ρeiϕwα(ξ), ψ∗α =
√

ρe−iϕw∗
α(ξ), α = 1, 2, . . . , n, (2.8)
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ψ∗ψ ≡
n∑

α=1

ψ∗αψα, (2.9)

where (*) means the complex conjugate, wα(ξ), α = 1, 2, . . . , n are functions of only
variables ξ. They satisfy the relations

− i

2

n∑
α=1

(w∗
α

∂wα

∂ξβ

− ∂w∗
α

∂ξβ

wα) = gβ(ξ), β = 1, 2, 3,
n∑

α=1

w∗
αwα = 1. (2.10)

The number n is such a natural number, that equations (2.10) admit a solution.
In general, n may depend on the form of the arbitrary integration functions g =
{gβ(ξ)}, β = 1, 2, 3. Practically n = 1 for irrotational flow, when g (ξ) = 0. In the
case of vortical flow n = 2.

Thus, the wave function is a method of the continuous medium description.

3 Transformation of the gas dynamic equations

to the form of description in terms of wave

function

Let us transform action (1.3) and (1.4) to the description in terms of the wave func-
tion. We consider variables ξ = ξ (x) in (1.3) as dependent variables and variables
x as independent variables. Let the relevant transformation Jacobian

J =
∂ (ξ0, ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
= det

∣∣∣∣ξi,k

∣∣∣∣ , ξi,k ≡ ∂kξi ≡
∂ξi

∂xk
, i, k = 0, 1, 2, 3

(3.1)
be considered to be a multilinear function of ξi,k. Then

d4ξ = Jd4x, ẋi ≡ dxi

dξ0

≡ ∂ (xi, ξ1, ξ2, ξ3)

∂ (ξ0, ξ1, ξ2, ξ3)
= J−1 ∂J

∂ξ0,i

(3.2)

After transformation to dependent variables ξ action (1.3) takes the form

A [ξ, κ] =

∫ {
−mcK

√
gik

∂J

∂ξ0,i

∂J

∂ξ0,k

− e

c
Ak

∂J

∂ξ0,k

}
d4x, (3.3)

K =

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, (3.4)

Now variables ξ and κ are considered as functions of independent variables x =
{x0, x1, x2, x3}.

Let us introduce new variables

jk =
∂J

∂ξ0,k

, k = 0, 1, 2, 3 (3.5)
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by means of Lagrange multipliers pk

A [ξ, κ, j, p] =

∫ {
−mcK

√
gikjijk − e

c
Akj

k + pk

(
∂J

∂ξ0,k

− jk

)}
d4x (3.6)

Variation with respect to ξi gives

δA
δξi

= −∂l

(
pk

∂2J

∂ξ0,k∂ξi,l

)
= 0, i = 0, 1, 2, 3 (3.7)

Using the identities

∂2J

∂ξ0,k∂ξi,l

≡ J−1

(
∂J

∂ξ0,k

∂J

∂ξi,l

− ∂J

∂ξ0,l

∂J

∂ξi,k

)
(3.8)

∂J

∂ξi,l

ξk,l ≡ Jδi
k, ∂l

∂J

∂ξi,l

≡ 0 ∂l
∂2J

∂ξ0,k∂ξi,l

≡ 0 (3.9)

one can test by direct substitution that the general solution of linear equations (3.7)
has the form

pk = b0 (∂kϕ + gα (ξ) ∂kξα) , k = 0, 1, 2, 3 (3.10)

where b0 6= 0 is a constant, gα (ξ) , α = 1, 2, 3 are arbitrary functions of ξ = {ξ1, ξ2, ξ3},
and ϕ is the dynamic variable ξ0, which ceases to be fictitious. Let us substitute
(3.10) in (3.6). The term of the form ∂kϕ∂J/∂ξ0,k is reduced to Jacobian and does
not contribute to dynamic equations. The terms of the form ξα,k∂J/∂ξ0,k vanish
due to identities (3.9). We obtain

A [ϕ, ξ, κ, j] =

∫ {
−mcK

√
gikjijk − jkπk

}
d4x, (3.11)

where quantities πk are determined by the relations

πk = b0 (∂kϕ + gα (ξ) ∂kξα) +
e

c
Ak, k = 0, 1, 2, 3 (3.12)

Integration of (3.7) in the form (3.10) is such an integration that allows to in-
troduce a wave function. Note that coefficients in the system of equations (3.7) at
derivatives of pk are constructed of minors of the Jacobian (3.1). It is the circum-
stance that enables one to carry out a formal general integration.

Variation of (3.11) with respect to κl gives

δA
δκl

= −λ2mc
√

gikjijk

K
κl + ∂l

λ2mc
√

gikjijk

2K
= 0, λ =

~
mc

(3.13)

It can be written in the form

κl = ∂lκ =
1

2
∂l ln ρ, ρ =

√
jsjs

K
(3.14)
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or

e2κ =
ρ

ρ0

≡
√

jsjs

ρ0K
(3.15)

where the variable κ is a potential of the κ-field κi and ρ0 =const is an integration
constant. Substituting (3.4) in (3.15), we obtain dynamic equation for κ

~2
(
∂lκ · ∂lκ + ∂l∂

lκ
)

= m2c2 e−4κjsj
s

ρ2
0

−m2c2 (3.16)

Variation of (3.11) with respect to jk gives

πk = − mcKjk√
glsjljs

(3.17)

or
πkg

klπl = m2c2K2 (3.18)

Substituting
√

jsjs/K from the second Eq. (3.14) in (3.17), we obtain

jk = − ρ0

mc
e2κπk, (3.19)

Now we eliminate variables jk from the action (3.11), using relation (3.19) and
(3.15). We obtain

A [ϕ, ξ, κ] =

∫
ρ0e

2κ
{−m2c2K2 + πkπk

}
d4x, (3.20)

where πk is determined by the relation (3.12). Using expression (1.4) and (3.15) for
K, the first term of the action (3.20) can be transformed as follows.

−m2c2e2κK2 = −m2c2e2κ
(
1 + λ2

(
∂lκ∂lκ + ∂l∂

lκ
))

= −m2c2e2κ + ~2e2κ∂lκ∂lκ− ~
2

2
∂l∂

le2κ

Let us take into account that the last term has the form of divergence. It does
not contribute to dynamic equations and can be omitted. After omitting this term,
we obtain

A [ϕ, ξ, κ] =

∫
ρ0e

2κ
{−m2c2 + ~2∂lκ∂lκ + πkπk

}
d4x, (3.21)

Here πk is defined by the relation (3.12), where the integration constant b0 is chosen
in the form b0 = ~

πk = ~ (∂kϕ + gα (ξ) ∂kξα) +
e

c
Ak, k = 0, 1, 2, 3 (3.22)

Instead of dynamic variables ϕ, ξ, κ we introduce two-component complex func-
tion (2.8) and (2.9)

ψ = {ψα} =
{√

ρeiϕwα (ξ)
}

=
{√

ρ0e
κ+iϕwα (ξ)

}
, α = 1, 2 (3.23)
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Here wα are functions of only ξ = {ξ1, ξ2, ξ3}, having the following properties

α=2∑
α=1

w∗
αwα = 1, − i

2

α=2∑
α=1

(
w∗

α

∂wα

∂ξβ

− ∂w∗
α

∂ξβ

wα

)
= gβ (ξ) (3.24)

where (∗) denotes the complex conjugation. The number of components of the wave
function ψ depends on the functions gβ (ξ). This number is chosen in such a way,
that equations (3.24) have a solution. Then we obtain

ψ∗ψ ≡
α=2∑
α=1

ψ∗αψα = ρ = ρ0e
2κ, ∂lκ =

∂l (ψ
∗ψ)

2ψ∗ψ
(3.25)

πk = −i~ (ψ∗∂kψ − ∂kψ
∗ · ψ)

2ψ∗ψ
+

e

c
Ak, k = 0, 1, 2, 3 (3.26)

Substituting relations (3.25), (3.26) in (3.21), we obtain the action, written in terms
of the wave function ψ

A [ψ, ψ∗] =

∫ {[
i~ (ψ∗∂kψ − ∂kψ

∗ · ψ)

2ψ∗ψ
− e

c
Ak

] [
i~

(
ψ∗∂kψ − ∂kψ∗ · ψ)

2ψ∗ψ
− e

c
Ak

]

+ ~2∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4 (ψ∗ψ)2 −m2c2

}
ψ∗ψd4x (3.27)

Let us use the identity

(ψ∗∂lψ − ∂lψ
∗ · ψ)

(
ψ∗∂lψ − ∂lψ∗ · ψ)

4ψ∗ψ
+ ∂lψ

∗∂lψ

≡ ∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4ψ∗ψ
+

gls

2
ψ∗ψ

α,β=2∑

α,β=1

Q∗
αβ,lQαβ,s (3.28)

where

Qαβ,l =
1

ψ∗ψ

∣∣∣∣
ψα ψβ

∂lψα ∂lψβ

∣∣∣∣ , Q∗
αβ,l =

1

ψ∗ψ

∣∣∣∣
ψ∗α ψ∗β

∂lψ
∗
α ∂lψ

∗
β

∣∣∣∣ (3.29)

Then we obtain

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ∗ψ

+
~2

2

α,β=n∑

α,β=1

glsQαβ,lQ
∗
αβ,sψ

∗ψ

}
d4x (3.30)

Let us consider the case of irrotational flow, when gα (ξ) = 0. In this case w1 = 1,
w2 = 0, and the function ψ has only one component. It follows from (3.29), that
Qαβ,l = 0. Then instead of (3.30) we obtain

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ∗ψ

}
d4x (3.31)
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Variation of action (3.31) with respect to ψ∗ generates the Klein - Gordon equation

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ = 0 (3.32)

Thus, description in terms of the Klein - Gordon equation is a special case of the
stochastic particles description by means of the action (1.3), (1.4).

In the case, when the fluid flow is rotational, and the wave function ψ is two-
component, identity (3.28) takes the form

(ψ∗∂lψ − ∂lψ
∗ · ψ)

(
ψ∗∂lψ − ∂lψ∗ · ψ)

4ρ
− (∂lρ)

(
∂lρ

)

4ρ

≡ −∂lψ
∗∂lψ +

1

4
(∂lsα)

(
∂lsα

)
ρ (3.33)

where 3-vector s = {s1, s2, s3, } is defined by the relations

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (3.34)

ψ =
(

ψ1
ψ2

)
, ψ∗ = (ψ∗1, ψ

∗
2) (3.35)

Here σ = {σ1, σ2, σ3} are Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ1 =

(
1 0
0 −1

)
(3.36)

Note that 3-vectors s and σ are vectors in the space Vξ of the Lagrange coordinates
ξ = {ξ1, ξ2, ξ3}. They are transformed as vectors under the transformations

ξα → ξ̃α = ξ̃α (ξ) , α = 1, 2, 3,
∂

(
ξ̃1, ξ̃2, ξ̃3

)

∂ (ξ1, ξ2, ξ3)
6= 0 (3.37)

In general, transformations of the Lagrange coordinates ξ and those of coordi-
nates x are independent. However, action (3.27) does not contain any reference to
the Lagrange coordinates ξ and transformations (3.37) of ξ. If we consider only
linear transformations of space coordinates x

xα → x̃α = bα + ωα
.βxβ, α = 1, 2, 3 (3.38)

nothing prevents from accompanying any transformation (3.38) with the similar
transformation

ξα → ξ̃α = bα + ωα
.βξβ, α = 1, 2, 3 (3.39)

of Lagrange coordinates ξ. The formulas for linear transformation of vectors and
spinors in Vx do not contain the coordinates x explicitly, and one can consider vectors
and spinors in Vξ as vectors and spinors in Vx, provided we always consider linear
transformations (3.38) and (3.39) together.
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Using identity (3.33), we obtain from (3.27)

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ρ− ~

2

4
(∂lsα)

(
∂lsα

)
ρ

}
d4x

(3.40)
Dynamic equation, generated by action (3.40), has the form

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −

(
m2c2 +

~2

4
(∂lsα)

(
∂lsα

))
ψ

= −~2∂l

(
ρ∂lsα

)

2ρ
(σα − sα) ψ (3.41)

The gradient of the unit 3-vector s = {s1, s2, s3} describes rotational component
of the gas flow. If s = const, the dynamic Eq. (3.41) converts into the conventional
Klein - Gordon Eq. (3.32).

4 Interrelation between the axiomatic conception

and the gas dynamical conception of quantum

mechanics.

Axiomatic conception (AC) of quantum mechanics (QM) and the gas dynamic con-
ception (GDC) of QM lead to the same dynamic equations, and one may speak that
mathematical formalism of CGC of QM is equivalent to the mathematical formalism
of conventional QM. However, the AC of QM contains the wave function, which is
an axiomatical object. The meaning of the wave function is not clear and there are
necessary additional interpretation of quantum mechanics. There are several various
interpretations of QM, and some of them are incompartible with the mathematical
formalism of the quantum mechanics. Interpretation of any classical dynamic sys-
tem S is realized in terms of dynamical variables of the system S, and additional
interpretation of gas dynamic conception is not necessary.

The Copenhagen interpretation is the most widespread interpretation of quan-
tum mechanics In this interpretation one supposes that wave function describes a
state of a single particle. Unfortunately, this supposition is incompatible with math-
ematical formalism of quantum mechanics. Indeed, let us write the Schrödinger
equation in terms of two real equations for wave function ψ =

√
ρ exp (S/i). One

obtains

∂tρ +
1

m
∇ (ρ∇S) = 0 (4.1)

∂tS − 1

2m
(∇S)2 +

~2

2m
√

ρ
∇2√ρ = 0 (4.2)

If one sets ~ = 0 in (4.2), one obtains the Jacoby - Hamilton equation for a free
classical particle.

∂tS − 1

2m
(∇S)2 = 0 (4.3)
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It means that equations (4.1) and (4.3) describe statistical ensemble of classical
particles. It means that the Schrödinger equation describes a statistical ensemble
of quantum particles. It cannot describe a single quantum particle, because in this
case the classical limit ~→ 0 leads to a single classical particle, but not to statistical
ensemble of classical particles. Thus, in reality the wave function describes a state
of a statistical ensemble quantum particles. The same conclusion follows from the
action (1.3).

These two different interpretations differ in the relation, that in the case of
statistical ensemble one has two different kinds of measurement, whereas in the
case of a single particle one has only one kind of measurement. For the statistical
ensemble there are (1) massive measurement (M-measurement) that is produced over
all particles of the statistical ensemble, and (2) single measurement (S-measurement)
that is produced only over one of the ensemble particles. S-measurement and M-
measurement have different properties, and they cannot be confused.

In the case, when the wave function describes a state of a single particle, there is
only S-measurement. One obtains paradoxes, when the single measurement is used
instead of M-measurement. It is essential in the case, when a measurement (M-
measurement) changes the wave function (reduction of the wave function as a result
of M-measurement in process of entanglement and so on). We shall not consider
details of these phenomena here. They can be found in [10, 11, 12].

The difference between AC and GDC is not only in interpretation of quantum
mechanics. In axiomatic conception of QM all dynamic equations are linear in
terms of the world function. This linearity is a conceptual property of the axiomatic
conception. In gas dynamical conception of QM dynamic equations are linear in
terms of the wave function only for irrotational flow The axiomatic conception of
QM is a conception that does not admit further development. Axiomatic conception
supposes that the mean value 〈F (x,p)〉 of any function F (x,p) is determined by
the formula

〈F (x,p)〉 =

∫
ψ∗F (x,−i~∇) ψd3x (4.4)

whereas in the gas dynamic conception it is valid only for arbitrary function of
coordinates F (x), momentum p, energy E and angular moment x× p. In other
words, GDC supposes, that description in terms of world function is incomplete
and it needs a farther development. In nonrelativistic gas dynamics this description
of the stochastic molecule motion is specified by introduction of the distribution
function f (x,p) and kinetic equation for it. The theorem on impossibility of hidden
variable in quantum mechanics has been proved by von Neumann at the supposition
that relation (4.4) is valid for all functions F (x,p). The gas dynamic conception
of quantum mechanics introduces hidden variables, and inside CGC relation (4.4) is
valid not for all functions F (x,p).

The GDC of quantum mechanics is specified by introduction of a discrete space-
time geometry, where motion of free elementary particles is primordially stochastic
[13, 14, 15]. In particular, description of Dirac equation in terms of hydrodynamic
variables leads to the particle world line, having a shape of helix [16]. This additional
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development leads to so called structural approach to the elementary particles theory
[17]. This approach leads to a possibility of investigation of the internal structure
of elementary particles, whereas the axiomatic conception of QM leads to so called
empirical approach to the elementary particle theory, where the elementary particle
is a pointlike object provided by a set of quantum numbers.

It should note, that description in framework of gas dynamic conception ad-
mits one to investigate the pair production mechanism. At the reflection a particle
from the potential barrier such a κ-field arises near the point of reflection that the
coefficient K (1.4) becomes imaginary. As a result a tachyon region appears near
the point of reflection. In this region a pair generation is possible, because in the
tachyon region all world lines are spacelike.

Note, that investigation of the κ-field and discrete geometry was produced on
the basis of conventional statistical principles [17, 18, 2] without connection with gas
dynamics and with kinetic equation. As a result it was impossible to conclude that
such a description is more complete, than conventional description in the framework
of the axiomatic conception of quantum mechanics. Besides, it was impossible to
compare results on the elementary particle structure with results of the standard
model of elementary particles, because these results concern to different direction
of investigation (different approaches). In the same way one cannot compare the
first results on structure of atoms with results of the periodic system of chemical
elements, because the atomic structure is determined at the structural approach
(atomic physics), whereas the periodic system is determined at the empirical ap-
proach (chemistry).

5 Summary

It is shown that quantum effects can be described in terms of gas dynamic equations
without a use of quantum principles. It means that a reason of quantum effects is
some force field, but not quantum principles. As a result the quantum principles are
not the prime principles of the nature. It means, that there are fields, which should
not be quantized. In particular, there is no necessity to quantize the geometrical
fields, for instance, the gravitational field. (In particular, because dynamic equa-
tions for the gravitational field do not contain quantum constant). Description of
elementary particles in terms of the wave function appears to be incomplete. If one
takes into account the space-time geometry discreteness, which is a source of the
κ-field, description on the basis of gas dynamic equations may be more complete,
than description on the basis of quantum principles,
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