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ABSTRACT 
Dynamics and hear transfer in a porous medium filled with a 
fluid phase at parameters near the gas-liquid critical point are 
studied. A two-dimensional numerical solver based on the 
hydrodynamic model for a porous medium with a high 
compressible fluid phase including the van der Waals equation 
of state is used. In weightlessness, adiabatic heating of fluid 
phase under the step-temperature heat supply is investigated 
analytically and numerically. In terrestrial conditions, gravity-
driven convection in vertical rectangular cells generated by 
lateral heating in unsteady and steady-state regimes is 
simulated. The effects of high compressibility of near-critical 
fluid phase on convection are studied. Convective motions and 
heat transfer in horizontal rectangular cells consisting of two 
porous layers at different porosity and permeability heated 
from below are simulated as well. Adiabatic heating subjected 
to hydrostatic compressibility effects, the onset and 
development of convection, and convective structures in a 
steady-state regime are analysed.  

NOMENCLATURE 
t  time  

peτ  characteristic time of the piston effect 

dτ  characteristic time of thermal diffusion 
yx,  position coordinates 

l  length 
h  height 
g
r

 mass force acceleration  
ρ  density  

V
r

 fluid velocity 

U
r

 filtration velocity, ),( vu=U
r

 
P  total pressure  
P  volume-average pressure 
p   dynamic pressure 

T  temperature  
ε  reduced temperature, '/)''( cc TTT −=ε  
s  entropy (per mass) 
S  entropy (per volume) 
σ  ratio of heat capacities, ''/'' 0vcmm cc ρρσ =  
λ  thermal conductivity  
β  thermal expansion coefficient 
D  thermal diffusivity  
c  heat capacity 

vc  heat capacity of fluid at constant volume 

pc  heat capacity of fluid at constant pressure 
η  viscosity 
ϕ  porosity 
K  permeability 
ϖd  elementary volume 

Ω   full volume 
sd   elementary surface 

B  constant, gRB µ/=  

R   universal gas constant, R =8,31 J/(K.mol) 

gµ   molecular weigh 

Nu   Nusselt number  
Re  Reynolds number  
Da  Darcy number  
M  Mach number 
Θ  characteristic temperature difference at boundaries 

0γ   ratio of specific heats 

0dRa   model Rayleigh-Darcy number  

dRa  real Rayleigh-Darcy number 

0Pr  model Prandtl number  
Pr  real Prandtl number 
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Subscripts 
f  fluid phase 
s  solid phase 
m  porous medium 
c  critical value 
i  initial value 
0  reference value (far from critical) 
 
Superscripts 
'  dimensional value 

 

1. INTRODUCTION 
Substances at parameters near the gas-liquid critical point 
known as near-critical fluids are of great interest due to 
specific thermodynamic and transport properties leading to 
strong thermo-mechanical coupling and significant 
peculiarities in their dynamic behavior. With approach to the 
critical point, the specific heat at constant pressure and the 
compressibility grow unboundedly whereas the thermal 
diffusivity goes to zero1. Dynamics and heat transport in 
single-phase near-critical fluids were investigated extensively 
both in microgravity conditions in orbital flies (see Refs. 2-6 
and references cited therein) and on Earth in laboratory 
experiments7,8. A seemingly puzzling observation in space9 
stimulated a theoretical analysis10,11 which has revealed that 
adiabatic heating called the piston effect is the dominant 
temperature equilibration mechanism near criticality. 
Numerical simulations by different groups confirmed this 
prediction and gave many new results on features of the piston 
effect in different conditions, an interplay between convection 
and the piston effect, instability problems, and an influence of 
gravity force on complicated dynamics and heat transport near 
the critical point (see Refs. 12-18 and references cited therein). 

However, the problems of near-critical dynamics inside 
porous media are poorly understood despite theirs different 
applications in geophysics and energy-related systems. Only 
several numerical researches19,20 in this field associated with 
convection were carried out. The obtained results drew 
simplified dynamic and thermal patterns since a near-critical 
phase was modeled in the Oberbeck-Boussinesq 
approximation excluding effects of adiabatic heating. 
Recently, an asymptotic analysis of complex one-dimensional 
hydrodynamic equations of high compressible van der Waals 
fluid in a porous medium was performed21 showing some 
peculiarities of the piston effect inside a porous matrix. 

In this paper, a mathematical model based on 
hydrodynamic equations of porous media and the van der 
Waals equation of state of fluid phase is developed. The model 
describes effects governed by abnormal thermodynamic and 
transport coefficients, hydrostatic compressibility effects, 
adiabatic heating, and effects of solid matrix. Based on this 
model, a novel two-dimensional semi-implicit numerical code 
was designed. In weightlessness, the piston effect in a porous 

layer stimulated by step-temperature heating is studied 
analytically and numerically. The expression of the 
characteristic time of the piston effect is found. The obtained 
results are compared with the known solution for a single-
phase near-critical fluid. In gravity field, convection in vertical 
and two-layer horizontal cells under side and bottom heating 
in unsteady and steady-state regimes is simulated. The 
correlation relations are derived and a comparison with 
dynamics of ideal gas is carried out. An influence of adiabatic 
heating on convection and hydrostatic effects on adiabatic 
heating, the onset and development of convection, stated 
convective structures and effects of solid matrix are analyzed. 

 
2. MATHEMATICAL MODEL  
To derive the energy equation of an isotropic porous medium, 
first, the energy equations of solid and fluid phases are written 
separately. In dimensional form, these equations are as 
follows: 
 

( ) ''')1(
'
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s
ss qT

t
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∂
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The equation of fluid phase is multiplied by the porosity ϕ  
and that of solid phase by the factor )1( ϕ−  to give the 
balance relations in an elementary unit volume. The term  
in Eqs. (2.1) and (2.2) describes the interphase heat exchange. 
Further we assume that there is local thermal equilibrium so 
that the temperatures of solid and fluid phases are equal to 
each other, i.e. 

'vq

''' TTT fs == . Adding Eqs. (2.1) and (2.2), and 

replacing fluid velocity 'fV
r

 by the filtration velocity 

'' fVU
rr

ϕ= , we lead to the energy equation in the form: 
 

=+ ')'(''
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Tc vfmm ∇U
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Here, the variables '' mm cρ  and 'mλ  are associated with a 
porous medium as a whole: 
 

'''')1('' vfssmm ccc ϕρρϕρ +−=  (2.4) 

'')1(' fsm ϕλλϕλ +−=  (2.5) 
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The energy equation of porous medium Eq. (2.3) includes the 
work done by pressure in a fluid phase which is described by 
the first term in the right-hand side. This term allows us to 
simulate effects of adiabatic heating that is impossible in the 
classical model based on Oberbeck-Boussinesq 
approximation. 

One can derive the energy equation in another form. We 
start with the energy equation of fluid phase written as 
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t

T
c V

r
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Equation (2.6) may be transformed into Eq. (2.2) using the 
relation )','('' ff TPP ρ=  and the continuity equation. 
Adding Eqs. (2.1) and (2.6) with the assumption of local 
thermal equilibrium, we obtain the energy equation of porous 
medium in the form: 
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In Eq. (2.7), the conductivity 'mλ  is defined by the relation 

(2.5). The variable  includes the heat capacity at 
constant pressure and is defined as 

'' p
mm cρ

 
'''')1('' pfss

p
mm ccc ϕρρϕρ +−=  (2.8) 

 
Equations (2.3) and (2.7) are the equal to each other. It is 
convenient to include Eq. (2.3) to the mathematical model 
below but to use Eq. (2.7) in the analysis of the piston effect in 
the next section. 

A mathematical model consists of the ordinary continuity 
and momentum equations for an isotropic porous medium 
with a compressible fluid phase22, the energy equation in the 
form of Eq. (2.3), and the van der Waals equation of state. The 
pressure  is decomposed into two components (a volume-

average part 

'P
'P  and a rest part  associated with dynamic 

changes) so that 

'p
''' pPP += . The part 'P  is independent 

of space variables, therefore the gradient  in the 
momentum equation may be replaced by the gradient 

'P∇
'p∇ . To 

close the set of equations, the relation 0''
'

1

'

=
Ω ∫

Ω

ϖdp  

resulted from the condition on the term 'P  t  the average 
value is included. 

o be

The government equations are transformed into 
dimensionless form. The scales are: length , velocity , 
time , mass force acceleration , critical parameters 

'l 'U
'/' Ul 'g

'cρ  and , coefficients 'cT '0η , , , '0vc '0K '0mλ  (thermal 
conductivity '0mλ  is defined as '')1(' 00 fsm ϕλλϕλ +−= ), 

pressure ''' cc TB ρ  for  and 'P 'P  whereas  for 

. For the simplicity, the density of fluid 

2''Ucρ
'p 'fρ  loses the 

subscript f. The government equations are: 
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Dimensionless values are without primes. The dimensionless 
parameters are 
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Initially, the temperature is uniform, and the velocity is zero. 
The fluid phase is stratified according to the linear relations: 
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The subscript «+» marks values in the center of volume. The 
fluid slips at boundaries. 

The thermal conductivity increases with approach to the 
critical point according to a power-law relation. In a pure near-
critical fluid, we use the relation6,14-18 

( )'/)''(1('' 0 ) ψλλ −−Λ+= ccf TTT  which leads to the 
dimensionless relation in a porous medium: 

. ψλϕλ −−Λ+= )1(1 0 Tm
The novel 2D numerical solver based on a finite-

difference formulation has been designed. The space 
discretization on a straggled grid using second-order implicit 
schemes is employed. Nonuniform rectangular grids are used. 
The equations are integrated successively. The momentum 
equation is solved by SIMPLE-type algorithm23. As 
mentioned above, two-scale splitting of the pressure in the 
government equations was carried out. This procedure has 
allowed us to design an effective numerical code for 
simulations of low-speed dynamic phenomena at a large time 
step. In the limit of small Mach numbers the model applied 
approaches to the acoustic-filtering model24. However, we do 
not exclude sonic waves and may simulate acoustic processes 
as well. 

 
3. PISTON EFFECT  
3.1. THEORETICAL ANALISYS 
An analysis of the piston effect in a porous layer is performed 
in a fashion analogous to that in a single-phase fluid based on 
a linear thermodynamic approach13.  

A porous cell of fixed volume  containing a near-critical 
fluid is considered. The initial temperature of system is 
constant. The temperature at one boundary rises initiating 
thermal processes inside the cell. Body forces are equal to zero.  

'Ω

We consider the entropy per mass . The entropy 
variation 

'ms
'msδ  may be expressed by the density and pressure 

variations 'mρδ  and 'Pδ  as 
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Equation (3.1) is averaged in the space to result in the 
expression of the average variation entropy 
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The process is in equilibrium and the entropy variation 
'mSδ  (per volume) is determined by the heat supply 'qδ : 

''' qST m δδ = . Integrating the last equation in the space and 
using the relation: ''' mmm sS ρ= , we have  
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where  is the net heat amount. The left-hand side of Eq. 
(3.3) may be transformed with the use of the average variation 
entropy giving  
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From Eqs. (3.2) and (3.4), one can obtain 
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Further, the energy equation in the form of Eq. (2.7) is 
considered. Going, in the left-hang side, from the partial time 
derivative to the total derivative, we find 
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Equation (3.6) is applied to the interior (bulk) region of cell 
beyond the thermal boundary layer. In this region, the thermal 
diffusivity is negligible therefore the last term in Eq. (3.6) 
may be omitted. The convective term in the left-hang side is 

vanishing as well due to the divergence of  in the critical 'p
mc
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neighborhood ( ). Therefore, in the bulk, Eq. (3.6) 

may be written as 
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ms cc <<

 

'
'

'
'

'
'

'
'''

' td
Pd

T
T

td
Tdc

P

f

f

inp
mm

δρ
ρ

ϕδρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−=  (3.7) 

 
where the variables  and  are replaced by 'T 'P 'Tδ  and 

'Pδ . In the left-hand side of Eq. (3.7), we marks 'Tδ  by the 
subscript “in” indicating that it is the temperature variation in 
the interior region. The pressure variation 'Pδ in the right-
hand side of Eq. (3.7) is substituted by the expression of Eq. 
(3.5) leading to the equation 
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The product of derivatives in Eq. (3.8) is replaced by 
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where two first derivatives in the right-hand side are defined 
solely by the properties of fluid phase. Using the 
thermodynamic identity for fluids  
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we have instead of Eq. (3.8) the equation 
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Equations (2.4) and (2.8) yield the identity 
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transforming Eq. (3.11) to the form 
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Note, Eq. (3.13) contains solely the variables of porous 
medium. 

The value 
'
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td
QdJ =  is the heat flux entering to the cell in 

a time unity which is related to the local heat flux (per surface 

unity)  as 'j
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Jdj = . The value  is defined by the 
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and substituting Eq. (3.14) for Eq. (3.13), obtain 
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 xef l

δT

x0

 δTb

 δTin

∂T
/∂

x=
0

 
Fig. 1. Configuration of the piston effect in a layer.  

 
Equation (3.15) relates temperature changes in the bulk region  
with temperature gradients at boundaries. Equation (3.15) is 
derived from Eq. (3.7) which neglects the thermal diffusion 
mechanism and takes into account only the work done by 
pressure. Consequently, Eq. (3.15) is responsible for an 
adiabatic temperature change called the piston effect. 

Now we study the thermal response of medium to a step-
temperature heat supply in an infinite layer shown in Fig. 1. 
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The temperature at the left boundary simultaneously rises in 
some value 'bTδ  and is fixed. The right boundary is 

thermally insulated. 
The module of temperature gradient near the heated wall 

'T∇
r

 is related to the temperature step 'bTδ  as 

'/'~' efb xTT δδ∇
r

. The length of boundary layer  

increases in time due to thermal diffusion as 
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=  is the thermal diffusion coefficient. 

Substituting the last relations for Eq. (3.15), we find 
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The time integral of Eq. (3.16) gives the temperature variation 
in the bulk: 
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The characteristic time of the piston effect 'peτ  is defined as 

the instant when the bulk temperature variation becomes near 
the temperature step at the boundary, i.e. '' bin TT δδ ≈ . This 
criterion gives instead of Eq. (3.17) the relation: 
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and, at last, the expression of 'peτ : 
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Note, the heat capacities of porous medium  and  in 
Eq. (3.19) are determined in combination with the density 

'mc 'p
mc

'mρ . The products '' mm cρ  and  are defined by 
Eqs. (2.4) and (2.8). We write Eq. (3.19) as an exact 
equalization since it is used for the definition of 

'' p
mm cρ

'peτ . A 

validation of the definition of 'peτ  by Eq. (3.19) will be done 

in the next subsection.  

One can exhibit that Eq. (3.19) is simplified to the 
expression of the time of the piston effect in a single-phase 
fluid fpe )'(τ  found in Ref. 13 
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if the porosity goes to the unity: 1→ϕ  (the fraction of solid 
phase becomes negligible) and parameters of porous medium 
are replaced with parameters of pure fluid: '' fm ρρ → , 

, , '' vm cc → '' p
p
m cc → '' fm λλ → .  

With approach to the critical point, the complex  
becomes much greater then 
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which is similar to 0)'( →fpeτ in a single-phase fluid.  
 
3.2. NUMERICAL SIMULATIONS 
A vertical rectangular cavity of porous material filled with a 
near-critical fluid in weightlessness ( 0=gr ) is considered. 
The temperature is constant. The density of fluid phase is 
critical. The velocity is zero. At the initial moment, the 
temperature at the left boundary instantaneously rises in Θ  
and is fixed. The other boundaries are thermally insulated.  

The calculations were performed in a cavity at the aspect 
ratio 2/ =lh  on a nonuniform 81x81 grid. The initial 
temperature distance to the critical point '' ci TT −  varies. The 

other parameters are: , 51030.3 −⋅=Θ 33.10 =γ , 

, , , 

, 

51097.3Re ⋅= 9104 −⋅=Da 2
0 1021.1Pr −⋅=

310−=M 4.0=ϕ , 68.8=sscρ , , 2
0 1046.2 −⋅=λ

028.0=Λ , 74.0=ψ . The dimensionless parameters 
characterize the cavity of length  m willed with CO2 

(

1.0'=l

15.304'=cT  K,  kg/m3, 21068.4' ⋅=cρ 387.7'=cP  MPa)1 

at  Pa.s,  J/(kg.K), 6
0 1057.32' −⋅=η 567'0 =vc 05.0'0 =λ  

W/(m.K). The solid matrix is made of a sand-like matter at 
960'=sc J/(kg.K), 2400'=sρ  Kg/m3, 35.3'=sλ  

W/(m.K). At the initial moment, the temperature is 0.55 K 
above the critical one. Heating of the left boundary is in 0.01 
K. The time step of integration varied in the range 

 s. In weightlessness, the problem is 
near to one-dimensional one. 

24 1073.11031.4 −− ⋅÷⋅

In the case of a single-phase fluid, an analytical 
analysis13 gives that the interior temperature deviation 
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( ) finT 'δ  can be written in the following scaling form for 

 (  is the thermal diffusion coefficient of pure 
fluid) 

'/'' 2 Dlt << 'D

 
( ) ( )[ ]fpeabfin tFTT )'/('1'' τδδ −=  (3.21) 

 
where  is defined by ( )sFa ( ) [ ])(1)exp( serfssFa −=  

with )( serf  being the error function. As following from 

Eq. (3.21), ( ) 572.0'' =bfin TT δδ  at fpet )'(' τ=  that is, at 

the instant to be equal to the time of the piston effect, the ratio 
of the interior temperature deviation to the boundary 
temperature step reaches 0.572. We apply this prediction to 
the piston effect in a porous layer and take from numerical 
simulations the instant 'τ  corresponding to 

572.0'' =bin TT δδ . The time 'τ  depending on the 
temperature distance to the critical po '' cT−  at two 
values of poro .0=

int T
sities: 

i
4ϕ  and 7.0=ϕ  is shown in Fig. 2. 

For comparison, we show the analytical time of the piston 
effect defined by Eq. (3.19). For the fluid phase being the gas 
of van der Waals, Eq. (3.19) transforms into the form:  
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 (3.22) 

 
The diffusive time 'dτ  is calculated analytically as well. 

The value of 'dτ  is defined by the problem on the 
propagation of temperature step in a moveless medium which 
has the solution25: ))''/'5.0(1('' tDxerfT m−Θ=δ , here 

. The time )''/('' mmmm cD ρλ= 'dτ  is taken to be the instant 
when the ratio of the temperature increment at the right 
boundary 'Tδ  to the temperature step  reaches the chosen 
value of 0.572. This condition yields the constant . We 
have:  

'Θ
C

 
'/'' 2

md DlC=τ ,    (3.23) 393.0=C
 

The dependency of 'dτ  on  at '' ci TT − 4.0=ϕ  and 7.0=ϕ  
is shown in Fig. 2. 

At the end, we plot the curve of the time fpe )'(τ  in a 
single-phase fluid defined by Eq. (3.20) which for the van der 
Waals gas may be reduced to the formula: 

T'i -T 'c, K
1 10 100

1
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- 1
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τ'
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d'
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pe
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(τ
pe

')
f,

 s

 
Fig. 2. Simulated time 'τ (1), 'peτ  calculated by Eq. (3.22) 

(2), 'dτ  calculated by Eq. (3.23) (3) at 4.0=ϕ , and 
times 'τ  (4), 'peτ (5), 'dτ  (6) at 7.0=ϕ . Time 

fpe )'(τ  in a single-phase fluid calculated by Eq. 
(3.24) (7). 
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 (3.24) 

 
The value Θ+ 5.0iε  is taken as ε  in Eqs. (3.22) and (3.24). 

As is clear from Fig. 2, at  K for 2'' >− ci TT 4.0=ϕ  and 

 K for 7'' >− ci TT 7.0=ϕ , the simulated time 'τ  is nearly 

independent of  and close to the value '' ci TT − 'dτ  
demonstrating the thermal diffusion mechanism to be 
dominant in thermal relaxation. With approach to the critical 
point, the time 'τ  becomes shorter and shorter and is very 

near to 'peτ  showing that the piston effect occurs and 

dominates. If the fraction of fluid phase is reduced (the 
porosity ϕ  decreases), the range of temperature near the 
critical point responsible for the piston effect shortens, the 
piston effect slows down, and the curve of 'peτ  goes away 

from that of fpe )'(τ . 

Slowing down of the piston effect with decreasing in 
porosity may be explained as followed. During adiabatic 
heating, a fluid in the interior region gives up a part of energy 
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to the solid matrix since the phases are in local equilibrium 
and must have equal temperatures. Therefore only a part of 
work done by pressure in the boundary layer is consumed to 
heat a fluid in the bulk. In a medium at a lower porosity, the 
bigger part of energy is given up to the matrix to result in 
slowing down of the piston effect.  

 

1 2 3

0.2

0.4

0.6

δT
in

'/δ
T b

'

t '/ τpe'0

- 1
- 2
- 3

 
Fig. 3. Dependency of '/' bin TT δδ  on '/' pet τ  found 

analytically13 (1), and by simulations at 4.0=ϕ , 
 K (2), at 55.0'' =− ci TT 7.0=ϕ ,  K (3). 70.1'' =− ci TT

 
As mentioned above, the interior temperature deviation 

( ) finT 'δ  in a single-phase fluid satisfies Eq. (3.21) found in 

Ref. 13. One can show that the solution of the energy equation 
in a porous medium is the same and different solely in the 
time scale. To apply Eq. (3.21) to a porous layer, the time 
scale fpe )'(τ  should change by 'peτ . The dependency of 

'/' bin TT δδ  on the scaled time '/' pet τ  is exhibited in Fig. 3. 

The results of numerical simulations at two sets of ϕ  and 

 (other parameters as above) are plotted in Fig. 3 as 
well. As is evident, the analytical and numerical results are in 
good agreement that validates the definition of 

'' ci TT −

'peτ  by Eq. 

(3.19) and demonstrates the applicability of Eq. (3.21) to near-
critical porous layers. 

We studied enhancing in the heat exchange by the piston 
effect and calculated the coefficient  shown in Fig. 

4. Here 

dqqC /=

dyxTq
h

m∫ ∂∂−=
0

λ  is the heat flux at the heated 

boundary, and  is the same function at the zeroth velocity. 
The value  characterizes the heat consumption by a cell due 

to the piston effect and thermal diffusion, whereas  only 

due to thermal diffusion. Four sets of 

dq
q

dq

ϕ  and '' ci TT −  are used 
at the above other parameters. If , enhancing of heat 
consumption due to the piston effect is observed. It is clear, 
that the piston effect is able to give a multiple enhancing of 
heat consumption at an initial time interval. Going to the 
critical point and increasing 

1>C

ϕ , the action of the piston effect 
becomes more substantial while the time of this action 
shortens.  
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0  
Fig. 4. Coefficient C  depending on  at 't 4.0=ϕ  and 

55.0'' =− ci TT  K (1),  K (2), at 70.1'' =− ci TT 7.0=ϕ  
and 55.0'' =− ci TT  K (3),  K (4). Dot-
dashed line corresponds to . 

70.1'' =− ci TT
1=C

 
3.3. RESTRICTIONS OF THE MODEL 
The phases are assumed to be in local thermal equilibrium. 
However, as shown above, the piston effect goes faster and 
faster with approach to the critical point. Therefore, one can 
come to conditions when the phases are not able to reach 
thermal equilibrium in a time scale to be of order of the 
characteristic time of the piston effect. In a fine-grained 
matrix, equilibrium can be achieved whereas the temperature 
of matrix made of big grains may not be as much as the quick 
changeable temperature of fluid phase. One can estimate the 
characteristic size of grains. For the sake of simplicity, grains 
are assumed to be spheres of equal diameter. Heating of a 
separated grain is described as26 
 

'
''

''2
'
''' 2

d
TT

d
t

Tcm sf
f

s
s

−
= λπ

∂
∂

 (3.25) 

 

Here, '
6

''
3

s
dm ρπ

=  and  are the mass and diameter of 

sphere. The characteristic time of heating of sphere 

'd

'qτ  is 

defined by the relation '/)''('/' qsfs TTtT τ∂∂ −=  that in 
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combination with Eq. (3.25) gives the formula: 
. For equilibrium to be achieved, 

the condition 

)'12/('''' 2
fssq cd λρτ =

'' peq ττ <<  should be satisfied. This condition 
with the use of Eq. (3.19) leads to the expression: 
 

2

22
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 (3.26) 

 
If the fluid phase obeys the van der Waals equation of state, 
the last expression combined with Eq. (3.22) may be 
transformed into the form: 
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For the medium at stated above parameters, the estimations by 
Eq. (3.27) give the following values. If 4.0=ϕ , we have 

 cm at ,  cm at , and 

 cm at . If 

3'<<d 210−=ε 1'<<d 310−=ε

3.0'<<d 410−=ε 6.0=ϕ , we have 2'<<d  cm 

at ,  cm at , and  cm at 

. As is evident, for , the obtained values 
are realistic for many practical cases that validates the 
approach of local thermal equilibrium. 

210−=ε 7.0'<<d 310−=ε 2.0'<<d
410−=ε 310−≥ε

There are restrictions on a very small size of grains and 
pores (being of the same order). Tending to the critical point, 
the fluctuations in a fluid grow. The correlation length 'ξ  is 
described by the power-law relation: 
 

νεξξ −⋅= '' 0  (3.28) 
 

where  cm and 8
0 10' −=ξ 3/2=ν  for a typical fluid27. A 

fluid phase can not be considered as a homogeneous 
continuous medium if the correlation length becomes of order 
of the size of pores. We obtain from this criterion that 

 cm at , and  cm at 

. The finding estimations are satisfied in major 
cases. 

610' −>>d 310−=ε 6105' −⋅>>d
410−=ε

 

4. CONVECTION IN SIDE-HEATED CELLS  
4.1. CORRELATION RELATIONS 
For problems of convection in pure fluids, the method of 
comparison of flows near and far from the critical point was 
developed15,28,29. Two fluids having analogous physical 
properties except the compressibility are compared allowing 
us to recognize effects of high compressibility, particularly, 
adiabatic heating near the critical point. To match the fluids, 
the correlation relations connecting the model (contained in 
the government equations) and real (actually characterizing 
convection) criteria of similarity were derived.  

A similar method may be developed for porous media as 
well. Tending to the critical point, the heat capacity , the 

coefficients 

'pc

'β  and 'mλ  go to infinity whereas all 
dimensionless complexes defined by Eqs. (2.15) remain fixed. 
The permeability  may also change in critical region but 
we do not have sufficient data on its behavior and assume the 
value  to be constant. To characterize near-critical 
convection, one should define the real criteria of similarity 
containing the actual values of , 

'K

'K

'pc 'β , and 'mλ . We write 
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m
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Substituting  and 'pc 'β  by the thermodynamic identities 
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and transforming Eqs. (4.1), one can find 
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The derivatives in Eqs. (4.3) are determined by the equation of 
state of fluid phase. For the van der Waals equation of state 
near the critical isochore, one can write 
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Equations (4.4) connecting the model Rayleigh-Darcy  

and Prandtl  numbers with their real analogies  and 
0dRa

0Pr dRa
Pr  are called the correlation relations. 
 
4.2. NUMERICAL SIMULATIONS 
A vertical rectangular porous cell filled with a near-critical 
fluid in the Earth’s gravity field ( )1,0( −=gr ) is considered. 
The temperature is constant, the velocity is zero, and the fluid 
is stratified. The density of fluid in the central plane of cell is 
critical. At the initial moment, the temperature at the left 
boundary instantaneously rises in  and is fixed. The right 
boundary is held at the initial temperature while the horizontal 
boundaries are thermally insulated. The sketch of the problem 
is shown in Fig. 5. The matter of matrix is the same as in the 
previous section, the fluid phase is water (  K, 

 kg/m3, P Pa)1. The near-critical 
physical properties of water are taken from e-Tables 
(

Θ

3.647'=cT
21021.3' ⋅=cρ 12.22'=c  M

http://twt.mpei.ac.ru/ochkov/WSPHB/Engindex.html) being 
the electronic appendix to Ref. 30. The initial temperature is 2 
K above the critical one, the temperature step at the left 
boundary is  K. 1.0

0

gTi+Θ Ti

xl∂T /∂y=0

y
h

∂T /∂y=0

 
Fig. 5. Sketch of problem.  

 
The calculations were performed in a cell at the length 

 m and aspect ratio  on a nonuniform 61x81 grid. 

The dimensionless parameters are: , 

, 

1'=l 3/ =lh
31009.3 −⋅=iε

41055.1 −⋅=Θ 29.10 =γ , , 

, , , 

, 

2
0 1064.5 −⋅=dRa

61065.6Re ⋅= 12105 −⋅=Da 2
0 1050.6Pr −⋅=

310−=M 4.0=ϕ , 80.1=sscρ , 268.00 =λ , 

, 31072.8 −⋅=Λ 992.0=ψ . The time step of integration 

varied in the range  s.  10.21031.1 2 ÷⋅ −

For comparison, simulation in a cell with an ideal gas 
(obeying the equation of state: TP ρ= ) was performed. 
Convection of the near-critical fluid is characterized by the real 
Rayleigh-Darcy  and Prandtl dRa Pr  numbers which are 

calculated by Eqs. (4.4):  and 654=dRa 58.3Pr = ; the value 
Θ+ 5.0iε  is taken as ε . Since, in an ideal gas, the model and 

real criteria of similarity are equal to each other, simulation of 
convection in the ideal gas was carried out at 6540 =dRa  and 

58.3Pr0 =  in the government equations. Growing in  as 
compared with a near-critical fluid phase is provided by 
growing in 

0dRa

Θ  to be equal to  in the case of 
ideal gas. The other parameters are as stated above. 

21025.3 −⋅=Θ

(a) (b)  
Fig. 6. Temperature and velocity fields in a porous cell with a 

near-critical fluid at  and 

 (a), and with an ideal gas at 

2
0 1064.5 −⋅=dRa

2
0 1050.6Pr −⋅=

6540 =dRa  and  (b) at the instant 

 s.  

58.3Pr0 =
51031.1' ⋅=t

 
Side heating initiates gravity-driven convection in a fluid 

phase. In Fig. 6, the field of isotherms defined by the variable 
''' /)( Θ− iTT  and the dynamical field in two media at the 

instant corresponding to an unsteady regime of convection are 
demonstrated. In pictures with a gradient fill, the most dark 
color corresponds to the maximum value, and the white color 
to the minimum value. As is evident, in the near-critical fluid, 
two jets are formed whereas, in the ideal gas, a single jet rises 
near  the  heated  boundary.  This  qualitative  distinction  is 
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Fig. 7. Temperature increment  in the central 

horizontal plane in a porous cell with a near-critical 
fluid at  and  
(solid lines), and with an ideal gas at  and 

 (broken lines) at the instant  

(1);  (2) s. 

''' /)( Θ− iTT

2
0 1064.5 −⋅=dRa 2

0 1050.6Pr −⋅=
6540 =dRa

58.3Pr0 = 51031.1' ⋅=t
71070.1 ⋅

 
 

 
Fig. 8. Fields of temperature and stream function in a porous 

cell with a near-critical fluid at  

and  in steady-state convection. 

2
0 1064.5 −⋅=dRa

2
0 1050.6Pr −⋅=

 
associated with the piston effect in the first case. The time of 
the piston effect  s is a several times shorter 

than the demonstrated instant  s therefore the 
piston effect manages to heat an interior region of cell forming 
the cool boundary layer near the right (isothermal) wall. As a 
result, a jet moving down is formed near the right wall while 
the other jet rises near the left (heated) wall. In an ideal gas, a 
single boundary layer is formed due to conductivity near the 

heated boundary initiating a single jet. The temperature 
profiles are shown in Fig. 7; see curves 1. 

41025.2' ⋅=peτ
51031.1' ⋅=t

For a long time over the diffusive time 'dτ , the steady-
state regime of convection is reached and the role of the piston 
effect is anticipated to become negligible. In Fig. 7, the 

temperature profiles at the instant  s exceeding 

the time  s in media with a near-critical fluid and 
an ideal gas are drawn; see curves 2. As is evident, the 
temperature profiles are close to each other indicating the 
similarity of thermal fields in two media. In Fig. 8, the 
temperature field and field of stream function in steady-state 
regime are shown; the patterns of an ideal gas are very near 
and therefore not exhibited. In steady conditions, circular one-
roll motions both in a near-critical fluid and an ideal gas are 
observed. 

71070.1' ⋅=t
5106' ⋅≈dτ
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Fig. 9. Dependence of  on  in a vertical cell at 

the aspect ratio  obtained by simulations (1) 
and analytically31 (2). 

Nu hlRad /
3/ =hl

 
To characterize the convective heat transfer, the Nusselt 

number  at the side boundaries was calculated by the 

equation: 

Nu

dyxTjNu
h

m∫ ∂∂−=
0

1 λ , here  is heat flux in 

a moveless medium. In a steady-state regime, the Nusselt 
numbers at the left and right walls are equal to each other. The 
initial value 

j

iε  varies so that we have the variation of the real 

Rayleigh-Darcy number  at the fixed model 

number . The dependences of  on the complex 

 at the aspect ratio  are shown in Fig. 9. The 

variations of 

dRa

0dRa Nu
hlRad / 3/ =lh

iε  are corresponding to 102'' ÷=− ci TT  K. The 
other parameters are as stated in the beginning of this section. 
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The problem of steady-state convection in vertical porous 
layers at a fixed temperature difference at boundaries was 
solved analytically31 for a low compressible liquid phase. The 
solution31 was obtained in an approach of no interplay 
between thermal boundary layers but taking into account the 
limited height of cell. The analytical dependence 

 at  is demonstrated in Fig. 9. As is 
clear, the numerical and analytical data are in good agreement 
indicating two important consequences. First, the agreement of 
data validates the use of the correlation relations defined by 
Eq. (4.4). Second, this result demonstrates that the heat 
transfer in a layer with a high compressible fluid phase is the 
same as in a layer with a low compressible fluid phase that is 
the effects of high compressibility, particularly, adiabatic 
heating are negligible in steady-state convection. 

)/( hlRaNu d 3/ =lh

 
5. CONVECTION IN BOTTOM-HEATED CELLS  
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Fig. 10. Sketch of problem.  
 
A horizontal rectangular porous cell filled with a near-critical 
fluid in terrestrial gravity ( )1,0( −=gr ) is considered. The 
cell consists of two horizontal contacting layers of different 
porosity and permeability. We assign the porosity lϕ  and 

permeability  to a lower layer whereas 'lK uϕ  and  to an 
upper layer. The system is isothermal, the fluid is moveless 
and stratified. The fluid density riches the critical value in the 
central plane of cell. At the initial moment, the temperature at 
the bottom instantaneously rises in  and is fixed. The top 
boundary is held at the initial temperature. The vertical 
boundaries are thermally insulated. The sketch of the problem 
is shown in Fig. 10. 

'uK

Θ

The porous layers are made of the same matter therefore 
the permeability is related to the porosity. We take 4.0=lϕ , 

6.0=uϕ , and K  m2 and calculate  from 

the dependence22 simplified in the case of grains of equal 
diameters to the form 

11104' −⋅=l 'uK
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We obtain  m2. The cell has the height 101004.3' −⋅=uK
1.0'=h  m and the aspect ratio l . The Darcy numbers 

at the bottom and top normalized by  are  

and , respectively.  

4/ =h

'h 9104 −⋅=lDa
81004.3 −⋅=uDa

The solid matter is as in the previous sections. The fluid is 
CO2. The initial temperature is  K above the critical one. 

The temperature step is  K. The other 
dimensionless parameters (normalized by h ) are: 

, , 

55.0
31008.6 −⋅

'
31081.1 −⋅=iε 51000.2 −⋅=Θ 33.10 =γ , 

, , , 51097.3Re ⋅= 2
0 1021.1Pr −⋅= 310−=M

68.8=sscρ , , Λ , 2
0 1046.2 −⋅=λ 028.0= 74.0=ψ . 
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Fig. 11. Temperature profiles  (a) and density 

profiles 
Θ− /)( cTT

cc ρρρ /)( −  (b) along the central vertical 
line in a two-layer porous matrix at 4.0=lϕ , 

, 9104 −⋅=lDa 6.0=uϕ , and  (I) 
and in a uniform matrix at 

81004.3 −⋅=uDa
6.0=ϕ  and 

 (II), at 81004.3 −⋅=Da 4.0=ϕ  and  
(III) at the instants  (1), and 592  (2) s. 

9104 −⋅=Da
1.10'=t

 
The problem under study is of interest with respect to the 

complexity of dynamic phenomena. In short times, the piston 
effect goes in a fluid phase. As obtained in Section 3, the 
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characteristic time 'peτ  depends on the porosity leading to the 

different values of 'peτ  in lower and upper halves of cell. The 
fluid phase is subjected to hydrostatic effects. The features of 
the piston effect in variable conditions (determined by 
different 'peτ ) in a gravity field are of interest in the initial 
stage of process. In longer time intervals, a fluid starts to 
convect. The real Rayleigh-Darcy number  depends on 
the permeability therefore convection is characterized by 
different values of  in lower and upper parts of cell. A 
start of convection, peculiarities of convective flows and heat 
transfer in variable conditions (determined by different ), 
and convective structures in a steady-state regime are of 
interest in following stages of process.  

dRa
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Fig. 12. Dependence of the kinetic energy K  on the time . 

Insert: the same dependence in a shorten time interval. 
't

 
At the initial instant, bottom heating is turned on to 

initiate the piston effect in a fluid phase. To recognize an 
influence of two-layer porous matrix on the piston effect, two 
additional problems associated with a uniform container were 
solved numerically. In second case, a matrix has parameters 

6.0=ϕ  and  to be the same as in the upper 
part of two-layer cell. In third case, the parameters are 

81004.3 −⋅=Da

4.0=ϕ  and  as in the lower part of that. The 
time of the piston effect calculated by Eq. (3.22) is 

9104 −⋅=Da
198'=peτ  

s in the second problem and 592'=peτ  s in third one 

corresponding to the values of 'peτ  at the upper and lower 
parts of cell under study. In the absence of convection, thermal 
and dynamic patters are nearly one-dimensional. The 
temperature and density profiles across the cell are shown in 
Fig. 11. As is clear, the temperature and density profiles 
deflect from each other a little despite an essential difference 

in values of 'peτ . Neve , some differences are 

obs  the in  s (curves 2), the profiles 
of 

rtheless

erved and, stantat  592'=t
Θ− /)( cTT  and cc ρρρ /)( −  in a two-layer container 

approach at the top to the profiles in second case and at the 
bottom to those in third case. The fluid phase is stratified and, 
as exhibited in Fig. 11 (b), stratification is retained in the 
interior region of cel on of the piston effect in 
all cases. 
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Fig. 13. Field of t rature at t ants 'empe he inst 1.10 =t  (a), 

⋅  (c),  (d), 

the normalized kinetic ener d 

31063.3 ⋅  (b), 6 31065.  31065.9 ⋅
51010.5 ⋅  (e) s. 

 
We calculated gy of flui K  

by the equation: dydxU
hl ∫ ∫

0 0
2

K
h l

=
21
r

ρ
. The value of K  is 

nearly zero for a some time and starts to grow with co ection 
to develop. As shown in Fig. 12 sert), the energy 

nv
 (in K  starts 

to grow at the instant about 3103 ⋅  s substantially exceeding 
the characteristic times of the piston effect in the lower and 

cell but being shorter than the diffusive time upper parts of 
s. The comp of  ch31012.7' ⋅=dτ  arison  aracteristic  times 
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(e)  
Fig. 14. Field of density at the instants as in Fig. 13. 

 
shows that convection starts when the piston effect nearly 
finished however a diffusive mechanism did not manage to fit 
the temperature field generated by the piston effect. It means 
that the fluid phase stars to convect in the thermal field 
remembering the piston effect. As is clear from Fig 12, at the 
initial stage of convection, the curve of K  oscillates resulted 
from changing of convective patterns. Later, a steady-state 
regime of convection is reached associating with the energy 
K  to approach to constant.  

To demonstrate a structure of convection at different time 
instants, we show the thermal field in Fig. 13, the field of 
density in Fig. 14, and the field of gradient of density in Fig. 15. 
The radient of density wa  calculated as the function g s

( ) ( ){ } 2/122 yxf ∂∂+∂∂= ρρ  then the field of  was 
plotted in Fig. 15. We see from Figs. 13-15 (a), (b) that due to 
heating of interior region by the piston effect in the initial stage, 
two boundary layers (hot one near the bottom and cold one near 
the top) are formed. The gradient of density riches highest 
values near the top corners of cell (Fig. 15 (b)) resulting to a 
grow of instabilities. Later, cold plumes moving down are 
generated near the top boundary (Figs. 13-15 (c)). The top 
boundary layer is disturbed initially near the vertical walls then 
closer to its center. Note that instabilities in the Rayleigh-
Benard configuration were analyzed numerically in the case of  

f

(a)

(b)

(c)

(d)

(e)  
Fig. 15. Field of density gradient at the instants as in Fig. 13. 

 

a pure near-critical fluid32. The analysis32 showed that the top 
and bottom boundary layers were disturbed nearly 
simultaneously generating downward and upward thermal 
plums. In the present study, instabilities are generated only 
near the top that may be explained by different characteristics 
of convection below and above. As the lower and upper 
porous matrixes have different values of permeability  and 

, respectively, the values of the model (see Eq. (2.15)) 
and, consequently, real (see Eq. (4.4)) Rayleigh-Darcy 
numbers are different as well. We obtain the values of the real 
Rayleigh-Darcy number  at the bottom and 

'lK
'uK

6.95=dRa
716=dRa  at the top. Since the upper number  is an 

order of magnitude higher than the lower one, 
inhomogeneities are observed near the top wall. In a time 
interval associated with the onset of convection near the top 
wall, inhomogeneities near the bottom wall do not manage to 
originate. 

dRa

In a longer time, a convective motion covers the whole 
upper half of cell and penetrates the lower half (Figs. 13-15 
(d)). Finally, a steady-state regime of convection is reached 
(Figs. 13-15 (e)) characterizing by a periodic convective 
structure most clearly exhibited by the gradient of density 
(Fig. 15 (e)). We see three big plumes and two small plumes in 
between rising from the lower porous layer to the top. The 
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upward plumes alternate with downward plumes moving from 
the top. The highest values of the gradient of density are 
observed near the top wall and at the interface of porous layers 
due to deceleration of plumes. A convective heat transfer in a 
steady-state regime is characterized by the Nusselt number 

 to be the same at the bottom and top walls. 47.1=Nu
 

6. CONCLUSIONS 
In this paper, a thermodynamic analysis of the piston effect 
(adiabatic heating) stimulated by the step-temperature heat 
supply in a porous layer filled with a near-critical fluid was 
carried out. The dependence of the characteristic time of the 
piston effect on properties of fluid and solid phases was found. 
We examined by simulation the dependence of bulk 
temperature rise on time for a single-phase fluid13 and 
obtained that this function for a porous medium is the same 
but over a different time scale (the characteristic time of the 
piston effect in a porous medium is used instead of that in a 
single-phase fluid).  

To recognize an influence of the piston effect on gravity-
driven convection, the correlation relations connecting the 
model (set into the government equations) and real 
(characterizing convection actually) Rayleigh-Darcy and 
Prandtl numbers were written. The use of the correlation 
relations allowed us to compare dynamics and heat transfer in 
porous media filled with a near-critical fluid and a perfect gas 
to have analogous physical properties except a high 
compressibility. Comparing the results of simulation in 
vertical rectangular cells with side heating, it was shown that, 
in an unsteady regime, the piston effect can change convective 
patterns qualitatively but, in a steady-state regime, there is an 
analogy in the heat transfer in two cases since the piston effect 
is negligible.  

Simulations of the piston effect, the onset and 
development of convection in a cell heated from below were 
carried out. We considered a complex problem associated with 
a two-layer porous matrix and characterized by two sets of 
porosity, permeability, characteristic time of the piston effect, 
and Rayleigh-Darcy number. It was exhibited that, during the 
piston effect, stratification of fluid phase in the interior region 
retains and the temperature and density profiles do not change 
significantly depending on porosity and permeability. 
However, the onset and development of convection depend on 
properties of matrix significantly. As found, inhomogeneities 
are generated in the top boundary layer despite the cell is 
heated from below. Convection in a steady-state regime has a 
complex periodic structure resulted from the most motion to 
concentrate on the upper half of cell.  
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