
1 INTRODICTION 

1.1 Methods of seismic protection  
 Generally, current approaches for preventing fail-
ure of structures due to seismic activity can be di-
vided into two groups:  
 (i) methods for creating seismically stable struc-
tures and joints; this group contains methods of both 
active and passive protection;  
 (ii) methods for creating a kind of seismic barriers 
preventing seismic waves to transmit energy into the 
protected regions (passive).  
 Herein, we consider methods of seismic protection 
belonging to the second group.  

1.2 Types of wave barriers 
While the first group contains a lot of different engi-
neering approaches and solutions, the second one 
consists in two different approaches:  
 (a) Transverse barriers, immersed in earth to pre-
vent a surface wave to penetrate the protected re-
gion; see Fig.1.  

 
 

Figure 1. Transverse barrier by the Kalmatron Corporation.  
 

 To analyze effectiveness of such a barrier we 
should consider the typical surface seismic wave 
length. This length depends upon the wave angular 
frequency and the phase speed, but for the most dan-
gerous seismic frequencies lying in a range 5 ÷ 15 
Hz and for Rayleigh wave speeds 900 ÷ 2500m/sec, 
the corresponding wave lengths become 60 ÷ 500m. 
Taking into account this interval of the wave 
lengths, it is doubtful that a relatively shallow and 
narrow barrier shown on Fig.1 can prevent the seis-
mic wave from penetrating the protected region. Our 
observation revealed that a wave having a consid-
erably larger wavelength that the transverse barrier, 
actually does not “notice” a small barrier; see Fig. 2, 
where a simple FEM model demonstrates that a 
small transverse grove cannot reflect or scatter the 
wave.   

Figure 2. Interaction of a transverse grove with Rayleigh wave. 
 
 (b) Longitudinal barriers that consist of a surface 
layer with special physical properties that prohibit 
propagation of the desired surface wave; see Fig.3.  
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Figure 3. Longitudinal wave barrier. 
 
 One interesting approach is to create a “rough” 
outer surface at the upper layer (or half-space) to 
force the surface wave scatter by caves and swell-
ings; see Fig.4, where a half-space with the sinusoi-
dal roughness is pictured. In this respect, the rough 
surface apparently transforms the elastic half-space 
into viscoelastic. 

Figure 4. Half-space with rough surface 
 
 Problems of attenuation of Rayleigh waves due to 
roughness of the surface are discussed in quite a lot 
of publications (Sobczyk 1965, Urazakov & Falk-
ovskij 1972, Maradudin & Mills 1976, Maradudin & 
Shen 1980, Goldstein & Lewandowsky 1990). In the 
latter paper change of the phase speed along with at-
tenuation of Rayleigh wave due to roughness was 
observed. Actually, to achieve the desired attenua-
tion, the period of surface imperfections should be 
almost equal to the period of the surface wave, and 
the longitudinal length of the rough surface should 
be much larger than the wave length.  
 In practice, such a rough surface can be achieved 
by a series of rather deep trenches oriented transver-
sally to the most probable direction of the wave 
front. Some of obvious deficiencies of this method 
are: (i) its inability to persist the surface waves other 
than Rayleigh waves; (ii) protection from Rayleigh 
waves traveling only in directions that are almost or-
thogonal to orientation of the trenches; and, (iii) 
high sensitivity to the frequency of traveling 
Rayleigh waves.  

1.3 Modification of the surface layer  
 
 Our current research is devoted to analyzing lon-
gitudinal wave barriers, as shown on Fig.3, by find-
ing properties of the outer layer that can prevent the 
surface wave to propagate.  
 In practice, modifying physical properties of the 
outer layer can be achieved by reinforcing ground 
with piles or “soil nails”; see papers where reinforc-
ing was studied for increasing bearing load of the 
soil (Blondeau 1972, 1989, De Buhan et al. 1989, 
Abu-Hejleh et al. 2002, Eiksund 2004, Herle 2006).  
 If distance between piles is sufficiently smaller 
than the wave length, then a reinforced region can be 
considered as macroscopically homogeneous and ei-
ther transversely isotropic or orthotropic depending 
upon arrangement of piles. Of course, homogenized 
physical properties of the reinforced medium depend 
upon material of piles and distance and arrange-
ments between them.  
 For stochastically homogeneous arrangement of 
piles and the initially isotropic upper soil layer (be-
fore reinforcement), the reinforced soil layer be-
comes transversely isotropic with the homogenized 
(effective) characteristics that can be evaluated by 
different methods:  
 Voigt homogenization yields the upper bound for 
effective characteristics (Bensoussan, Lions, Papani-
colaou 1978): 

(1 )effective soil pilesf f= − +C C C , (1) 

where *C  are the corresponding elasticity tensors 
and f  is the average volume fraction of piles.  
 Reuss homogenization: 

(1 )effective soil pilesf f= − +S S S  (2) 

yields the lower bound, where *S  are the corre-
sponding compliance tensors. In the case of pile re-
inforcement these two methods give too broad 
“fork” and thus, are not reliable.  
 Much more accurate results give the two-scale as-
ymptotic expansion method (Bensoussan, Lions, Pa-
panicolaou 1978, Sanchez-Palencia 1983):  

(1 )effective soil pilesf f= − + +C C C K , (3) 

where K  is the corrector that is defined by solving 
the special boundary value problem for a typical pe-
riodical cell. It is interesting to note that taking the 
corrector K  in Eq. (3) as the null tensor we arrive at 
Voigt homogenization (1).  
 Methods for constructing the corrector in the two-
scale asymptotic expansion methods are discussed in 
(Michel, Moulinec, and Suquet 1999, Cecchi & 
Rizzi 2001).  



2 THE MAIN TYPES OF SEISMIC SURFACE 
WAVES 

 In this section we proceed to analyzes of the main 
types of surface waves and conditions for their non-
propagation  

2.1 Rayleigh waves  
 These waves discovered by Lord Rayleigh (1885) 
propagate on a plane surface of a halfspace; Fig. 5 
and exponentially attenuate with depth.  

 

Figure 5. Rayleigh wave in a half-space 
 

 The “forbidden” directions of “forbidden” (neces-
sary anisotropic) materials that does not transmit 
Rayleigh wave along some directions have been in-
tensively searched both experimentally and numeri-
cally (Lim & Farnell 1968, 1969, Farnell 1970) until 
mid seventies when the theorem of existence for 
Rayleigh waves was rigorously proved (Barnett & 
Lothe 1973, 1974a,b, Lothe & Barnett 1976 
Chadwick & Smith 1977, Chadwick & Jarvis 1979, 
Chadwick & Ting 1987). This theorem showed that 
no materials possessing forbidden directions for 
Rayleigh waves can exist.  
 Despite proof of the theorem of existence, a small 
chance for existence of forbidden materials re-
mained. This corresponded to the case of non-
semisimple degeneracy of a special matrix associ-
ated with the first-order equation of motion (actu-
ally, this matrix is the Jacobian for the Hamiltonian 
formalism). However, it was shown (Kuznetsov 
2003) that even at the non-semisimple degeneracy a 
wave resembling genuine Rayleigh wave can propa-
gate. Thus, for waves propagating on a homogene-
ous half-space, no forbidden materials or directions 
can exist.  

2.2 Stoneley waves  
 These are waves were introduced by Stoneley 
(1924), and analyzed by (Sezawa & Kanai 1939, 
Cagniard 1939, Scholte 1947). Stoneley waves 
propagate on an interface between two contacting 
half-spaces, Fig 6.  

 In contrast to Rayleigh waves, Stoneley waves can 
propagate only if material constants of the contact-
ing half-spaces satisfy special (very restrictive) con-
ditions of existence. These conditions were studied 
by Chadwick & Borejko 1994, Sengupta & Nath 
2001).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Stoneley wave on the interface 
 
 It should be noted that for the arbitrary anisotropy 
no closed analytical relations between material con-
stants of the contacting half-spaces ensuring exis-
tence (or nonexistence) of Stoneley waves have been 
found (2008). 

2.3 Love and SH waves  
 Love waves (Love, 1911) are horizontally polar-
ized shear waves that propagate on the interface be-
tween an elastic layer contacting with elastic half-
space; Fig. 7. At the outer surface of the layer trac-
tion-free boundary conditions are generally consid-
ered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Love wave propagating on the interface 
 
 In the case of both isotropic layer and half-space 
the conditions of existence derived by Love are: 

S S
layer halfspacec c< , (4) 



where *
Sc  are the corresponding speeds of the trans-

verse bulk waves. At violating condition (4) no Love 
wave can propagate. For the case of both anisotropic 
(monoclinic) layer and half-space the condition of 
existence is also known (Kuznetsov 2006a). 
 SH waves resemble Love waves in polarization, 
but differ in absence of the contacting half-space. At 
the outer surfaces of the layered plate different 
boundary conditions can be formulated (Kuznetsov 
2006b). In contrast to Love waves, the SH waves ex-
ist at any combination of elastic properties of the 
contacting layers.  
 Besides Love and SH waves a combination of 
them can also be considered. This corresponds to a 
horizontally polarized wave propagating in a layered 
system consisting of multiple layers contacting with 
a half-space. Analysis of conditions of propagation 
for such a system can be done by applying either 
transfer matrix method (Thomson 1950, Haskell 
1953), known also as the Thomson-Haskell method 
due to its originators; or the global matrix method 
developed by Knopoff (1964).  
 At present (2008) no closed analytical conditions 
of existence for the combined Love and SH waves 
propagating in anisotropic multilayered systems are 
known; however, these conditions can be obtained 
numerically by applying transfer or global matrix 
methods; see (Kuznetsov 2006a, b).  
 Different observations show that genuine Love 
and the combined Love-SH waves along with 
Rayleigh and Rayleigh-Lamb waves play the most 
important role in transforming seismic energy at 
earthquakes (e.g. Agnew 2002, Braitenberg & Zadro 
2007). But, as we have seen, there is a relatively 
simple (at least from theoretical point of view) 
method for stopping Love and the combined Love 
and SH waves by modifying the outer layer in such a 
way that conditions of existence are violated.  

2.4 Lamb and Rayleigh-Lamb waves  
 Lamb waves (Lamb, 1917) are waves propagating 
in a homogeneous plate and (if a plate is isotropic) 
polarized in the saggital plane, similarly to polariza-
tion of the genuine Rayleigh waves. It is known (Lin 
& Keer 1992, Ting 1996) that Lamb waves can 
propagate at any anisotropy of the layer and at trac-
tion-free, clamped, or mixed boundary conditions at 
the outer surfaces of the plate. The same result can 
be extrapolated to a layered plate containing multi-
ple anisotropic homogeneous layers in a contact 
(Ting 2002). Thus, for Lamb waves no forbidden 
materials exist. 
 More interesting from seismological point of view 
are Rayleigh-Lamb waves that are also polarized in 
the saggital plane and propagate in a system of lay-
ers contacting with a halfspace. Such a layered 
structure resembles one where Love or the combined 
Love-SH waves propagate, but Rayleigh-Lamb 

waves obviously differ from Love waves in polariza-
tion.  
 Theoretical research in developing longitudinal 
seismic barriers for Rayleigh-Lamb waves are cur-
rently focused on (i) finding conditions that can be 
imposed on the physical properties the outer layer to 
prevent Rayleigh-Lamb waves from propagation; 
and (ii) setting up an optimization problem on 
minimizing amplitudes of deflections or accelera-
tions of the traveling Rayleigh-Lamb wave by vary-
ing physical properties of the outer layer.  
 Mathematically the optimization problem for 
minimizing amplitudes of deflections can be written 
as finding minimum of the following target function:  

[ ]
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where 1 1,ρC , and 1h  are the elasticity tensor, den-
sity, and depth of the first (outer) layer correspond-
ingly, ω  is the angular frequency, Ω  is a set the in-
teresting frequencies, ( )s ω  is the spectral density, 
x = ⋅xν  is a coordinate along depth of the layer, and 
1u  is the amplitude of deflections in this layer. This 

problem resembles one that is usually solved at find-
ing optimal parameters for shock absorbers (Den 
Hartog 1985, Balandin et al. 2000, 2008).  

2.5 Solitonlike waves  
 Love, SH, and Rayleigh-Lamb waves admit 
propagation of their peculiar branches having infi-
nite wavelength. These peculiar waves can arise at 
blast underground impacts and resemble solitons in 
hydrodynamics.  
 Recent studies of the SH solitonlike waves 
(Djeran-Maigre & Kuznetsov 2008) revealed that 
conditions for stopping their propagation are essen-
tially the same as for the genuine SH waves.  

3 BASIC STEPS IN THE WAVE BARRIERS 
DEVELOPMENTS 

3.1 Simulation of surface acoustic waves 
propagation  

 This stage includes (i) analyses of capabilities of 
the main computer codes for dynamical non-
stationary modeling of SAW propagation, including 
Rayleigh, Lamb, Rayleigh-Lamb, Love, and SH 
waves; and (ii) interaction of the initial bulk waves 
arising at the source of perturbation with plane 
boundaries and forming SAW. 

3.2 Modeling interaction of the SAW with piles   
 Again, as it was in the preceding stage FEM 
analysis will be used to model (i) interaction of the 
SAW with a single pile; and (ii) scattering SAW by 
multiple piles (pile field). 



3.3 Performing two-scale asymptotic analysis in 
finding homogenized properties of the pile field 

 At this stage (i) the so-called cell problem will be 
solved by applying either periodic boundary integral 
equation technique (Kaptsov, Kuznetsov 1998), or 
by use of the FEM codes; (ii) the overall homoge-
nized properties of the pile field will be obtained by 
the two-scale asymptotic analysis (Sanchez-Palencia 
1983). 

3.4 Finding properties of the surface layer that 
prevents particular SAW to move into protected 
zone, or minimizing the amplitude of vibrations 
in the protected region  

 This stage is mainly based on (i) different analyti-
cal methods (Kuznetsov 2002, 2003, 2006a, b) de-
scribing physical properties of the surface layer 
needed to prevent a particular SAW to propagate 
into the protected zone, or (ii) finding conditions 
imposed on the  surface layer, at which the ampli-
tude of the SAW decreases in the protected zone.  

3.5 Analyzing interaction of the SAW with the 
modified surface layer 

This the final stage for the project. Actually, by 
applying FEM analysis, it should demonstrate that 
the particular SAW does not propagate inside the re-
gion surrounded by the barrier made by the pile field 
that desirably modifies the surface layer.  

  

4 SUMMARY  
 Thus, the suggested principle for creating longitu-
dinal barriers against surface seismic waves can ei-
ther (i) prohibit these waves from penetrating into 
the protected region, or (ii) decrease the amplitude 
of deflections in the outer layer by choosing its 
physical properties that ensure minimum of the tar-
get function (5).  

It should also be noted that in some circum-
stances the proposed method can be the only tool to 
protect building and structures, here we mainly 
mean soils subjected to liquefaction. Figure 8 dem-
onstrates an overturn of the building as a result of 

the earthquake that caused soil liquefaction.     

Figure 8. Overturn of the building due to liquefaction (Nnigata, 
1964) By courtesy of FEMA  
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