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Abstract: 

Homogenized Poisson’s ratio variation due to variation of porosity in porous media 

containing closed pores is analyzed by application of the two-scale asymptotic 

analysis combined with the periodic boundary integral equation method. 
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1 Introduction 

The considered porous medium is modeled by a deterministic scheme based on a regular 

space lattice with inclusions located at the nodes. Porous media can have different kinds of 

lattices, each having pores of specific geometry and orientation placed at the corresponding 

nodes. Uniformly distributed pores are modeled by the spheres located at the nodes of the 

face-centered cubic lattice (FCC). 

 In deriving basic equations it is assumed that the medium is elastic and anisotropic, 

and that no restrictions on the specific kind of anisotropy is imposed. Numerical computations 

will be implemented for an isotropic medium with spherical pores. The other assumption 

concerns the displacement field, which is supposed to be infinitesimal, so equations of the 

linear theory of elasticity can be applied.  

 The main problem for a porous medium with uniformly distributed pores is in its 

effective characteristic determination; in the case of elasticity it means determination of the 

effective (or averaged) Young’s and shear moduli, Poisson’s ratios etc. Along with this main 

problem several others can be solved in parallel, namely determination of level of 

microstructural stresses in a matrix material, these re highly oscillating stresses which may 

have high magnitude and can initiate volume fracture, and determination of scattering cross 

sections by pores, this is related to the ratio of the incident wave energy to the energy 

scattered by these inclusions. The latter problem is interesting due its direct connection to 

non-destructive testing of porous materials with uniformly distributed pores. 

 Existing literature on mechanics of heterogeneous media and wave scattering is so vast 

that one has to confine himself to review only works which have a rather close relation to the 

matter discussed.  

 The closest solutions in mechanics of heterogeneous media, including porous media 

can be obtained by application of the two-scale asymptotic analysis [1-3]. In this method it is 

assumed that two fields exist: (i) the global field, which is described by “slow” variables; and, 

(ii) a local field, having high oscillations, which is described by “fast” variables. Application 

of the two-scale asymptotic analysis to the problem stated above will be considered in a more 

detail later on. 
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 In the two-scale asymptotic method the effective elasticity tensor related to the porous 

medium can be represented by the following expression 

 0 ,f= +C C K  (1.1) 

where 0C  is the effective (homogenized) elasticity tensor, f  is the volume fraction of the 

pores, C  is the elasticity tensor of the material without pores (matrix), and K  is a correcting 

tensor, or “corrector”. It is clear from Eq. (1.1), that the main difficulty in determination of the 

effective elasticity tensor is in finding the corrector. 

 

 Remark. It is interesting to note that Eq. (1.1) covers almost all the existing methods of 

homogenization by choosing different expressions for the corrector:  

 a) Thus, if 0=K  the well known Voigt’s homogenization is obtained.  

 b) Taking  

 f= −K C , (1.2) 

the Reuss homogenization for the elasticity tensor comes out (for porous medium the Reuss 

homogenization produces the zero homogenized elasticity tensor).  

 

 Determination of the corrector in the two-scale asymptotic method demands the 

solution of the cell problem, which in turn consists of (i) setting up a boundary-value problem 

on the internal boundaries between pore(s) and the matrix material in a cell; and, (ii) 

formulating a periodic boundary-value problem on the outer boundary of a cell. The latter one 

is of the non-classical type in the sense that it is formulated on the boundary, which due to 

periodicity must have angular points and edges.  

 Along with FEM and finite differences methods, the following other methods for 

obtaining the solution to the cell problem are known. In [4 - 6], methods based on the 

Eshelby’s transformation strain were applied to analyses of isotropic media with ellipsoidal 

inclusions. The advantage of these methods resides in their principle possibility to analyze 
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media with anisotropic components, while from the computational point of view these 

methods are not very convenient since they lead to the three-dimensional integral equations 

with weakly singular kernels, and the problem reduces to the solution of the ill-posed problem 

for the integral equations of the first order. 

 In [7, 8], media with isotropic components were studied by applying a method based 

on the periodic fundamental solution for isotropic medium, which originally was constructed 

in [9]. Because of multipolar expansions used for the solution of the inner boundary value 

problem this method is confined to inclusions of spherical form. A similar approach was also 

used in the case of isotropic composites, but it was based on the Galerkin technique for 

solution of the inner boundary value problem [10]. 

 Periodic fundamental solutions for media with arbitrary anisotropy were developed in 

[11]. In combination with the boundary integral equation method (BIEM) these fundamental 

solutions were applied to solution of the cell problem for composites with anisotropic 

inhomogeneities and porous media in [12, 13], analysis of microstructural stresses in the 

matrix material was considered in [14]. Problems of wave scattering by pores were studied in 

[15] by application of the same method. Some of obvious advantages of this method are due 

to potential possibility to reduce the solution of the inner boundary-value problem to 

summation of the rapidly convergent series, while periodic boundary conditions on the outer 

boundary are satisfied automatically due to periodicity of the fundamental solution.  

 The following analysis is targeted to obtaining values for the homogenized Poisson’s 

ratio of porous medium, these data can be important for non-destructive evaluation of porous 

concentrations by analyzing the speed propagation of bulk and surface waves, as these are 

highly sensitive to variation of Poisson’s ratio. Numerical data are obtained for isotropic 

porous material containing spherical pores, while the theoretical analysis is carried out for a 

material with arbitrary elastic anisotropy. 

2 Basic notations 

The equations of equilibrium for a homogeneous anisotropic medium can be written in the 

form: 
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 x( ) div 0x x∂ = − ⋅ ⋅∇ =A u C u , (2.1) 

where u is a displacement field. It is assumed that the tensor of elasticity satisfies the 

condition of positive definiteness, which is generally adopted for problems of mechanics of 

inhomogeneous media. 

 Applying the Fourier transform 

 ^ 3( ) ( )exp(2 ) ,f f i dx Rξ = π ⋅ ξ ξ∈∫ x x , (2.2) 

to Eqs. (2.1), gives the following symbol of the operator A : 

 ^ 2( ) (2 )ξ = π ξ⋅ ⋅ ξA C . (2.3) 

 Directly from the definition of the fundamental solution E, the following formula for 

the corresponding symbol can be written: 

 ^ ^ 1( ) ( )−ξ = ξE A . (2.4) 

Formula (2.4) shows that the symbol ^E  is also strongly elliptic, positively homogeneous of 

degree -2 with respect to ξ , and analytical everywhere in 3 \ 0R . 

3 Spatially periodic fundamental solution 

Consider a homogeneous anisotropic medium, loaded by the periodically distributed force 

singularities, located in nodes m of a spatial lattice Λ .  

 Let , ( 1,2,3)i i =a  be linearly independent vectors of the main periods of the lattice, so 

that each of the nodes can be represented in the form:  

 i i
i

m= ∑m a , (3.1) 
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where im Z∈  are the integer-valued coordinates of the node m in the basis ( )ia . The adjoint 

basis ( *)ia  is introduced in such a manner that *i im⋅ =a m . The lattice corresponding to the 

adjoint basis will be denoted by *Λ . 

 Now, the periodic delta-function corresponding to the singularities located at the 

nodes of the lattice Λ  can be represented the form: 

 1

* *

( ) exp( 2 *)p QV i−

∈Λ

δ = − π ⋅∑
m

x x m , (3.2) 

where QV  is the volume of the fundamental region (cell) Q. Formula (3.2) defines the periodic 

delta-function uniquely.  

 Substitution of the periodic fundamental solution pE  into Eq. (2.1) yields 

 ( ) ( ) ( )p p∂ = δxA E x x I , (3.3) 

where I is the identity matrix. Looking for pE  also in the form of harmonic series and taking 

into account representation (3.2), it is possible to obtain: 

 
0

1

* *

( ) ^ ( *) exp( 2 *)p QV i−

∈Λ

= − π ⋅∑
m

E x E m x m , (3.4) 

where 0 *Λ  is the adjoint lattice without the zero node. It should be noted that Eq. (3.4) 

defines the periodic fundamental solution up to an additive (tensorial) constant. 

 

 Lemma 1. The series on the right side of Eq. (3.4) is convergent in the 1L -topology, 

defining the fundamental solution of the class 1 3 3( , )L Q R R⊗ , where 1L  is a class of 

integrable in Q functions with the zero mean value. 

 

 Proof of the lemma can be found in [11]. 
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4 Effective elasticity tensor 

For clarity and simplicity it will be assumed that the considered medium has the only one kind 

of uniformly distributed voids placed in the nodes of spatial lattice Λ. The region occupied by 

an individual void in a cell Q will be denoted by Ω. 

 The two-scale asymptotic analyses being applied to such a medium produces the 

following expression for the corrector [12]: 

 1 ( ( ))QV dY−

∂Ω

= − ⋅ ⋅ ν ⊗∫ YK C H Y , (4.1) 

where Y are the “fast” variables, H is the third-order tensor field, being a solution of the 

following boundary value problem: 

 
( ) ( ) 0, \
( , ) ( )

Y

Y Y Y

Q

∂Ω

∂ = ∈ Ω

ν ∂ = −ν ⋅

A H Y Y
T H Y C

. (4.2) 

In Eqs. (4.1) and (4.2) Yν  represents field of the external unit normal to the boundary ∂Ω , 

and the elasticity tensor C is referred to the matrix material (without pores) 

 

  Lemma 2. Under assumptions stated above, boundary-value problem (4.2) 

admits the unique solution. 

 

 Proof of the lemma can be found in [11, 12]. 

 

 Remark. Supposition that the tensor C in Eq. (4.2) is not strong elliptic, violates proof 

of Lemma 2. 

 

 Now, the solution of the boundary value problem (4.2) for the third-order tensor 

traction field Y−ν ⋅C  can be constructed by applying boundary integral equation method, 

giving the following representation for the desired solution [12]: 
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 ( )1
2 ( ) c′ ′+ = ∈∂ΩI S H Y H Y , (4.3) 

where cH  is a constant tensor, and S is a singular integral operator resulting from a restriction 

of the double-layer potential on the surface ∂Ω . Some of the relevant properties of operator S 

are discussed in [13]. 

 Substitution of Eq. (3.4) for periodic fundamental solutions into expression for the 

operator S allows us to obtain a lower (on energy) bound for the corrector; i.e. 

 ( )
0

222

* *

8 ^ ( *) * ^ ( *) *QV −
Ω

∈Λ

= − π χ ⋅⋅ ⊗ ⊗ ⋅⋅∑
m

K m C m E m m C  (4.4) 

where ^Ωχ  is the Fourier image of the characteristic function of the region Ω. An expression 

for the upper bound can be obtained similarly [12, 13].  

 

 Theorem. Series appearing on the right side of Eq. (4.4) is absolutely convergent, 

provided Ω is a proper open region in Q. 

 

Proof of the theorem can be found in [12, 13] 

 

5 Homogenized Poisson’s ratio for porous medium with isotropic matrix and spherical 

voids in nodes of FCC-lattice 

 Elasticity tensor for an isotropic matrix material (without pores) has the following 

components 

 

11 22 33

12 23 31

44 55 66

2 ,
,

c c c
c c c
c c c

= = = λ + µ

= = = λ

= = = µ

 (5.1) 
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where λ  and µ  are Lame constants, satisfying the following condition, which ensures 

positive definiteness of the elasticity tensor 

 3 2 0, 0λ + µ > µ >  (5.2) 

Substituting elasticity tensor (5.1) into the expression (4.4), and taking into account that for 

the unit ball 3RΩ⊂ , the corresponding Fourier image of the characteristic function has the 

form 

 2

sin(2 )1( ) cos(2 )
2

∧
Ω

⎛ ⎞π ξ
χ = − π ξ⎜ ⎟

π ξπ ξ ⎝ ⎠
ξ , (5.3) 

we arrive to expression (4.5) for the corrector, where for an isotropic medium the symbol of 

the fundamental solution takes the form: 

 
( )2 2

1( )
22

∧
⎛ ⎞λ +µ ⊗

= −⎜ ⎟⎜ ⎟λ + µ ξπ ξ µ ⎝ ⎠
E I ξ ξ

ξ . (5.4) 

 Now, the homogenized Poison’s ratio 0ν  can be obtained by the following relation 

 
11
0

0 12 44
0 0

1
2( )

c
c c

ν = −
+

, (5.5) 

where 11 12 44
0 0 0, ,c c c  are referred to the components of the homogenized elasticity tensor. 

 The obtained numerical data for the homogenized Poisson’s ratio are presented in fig.1 
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These demonstrate decreasing 

of the overall homogenized 

Poisson’s ratio 0ν  with the 

increase of the porous ratio, 

provided the corresponding 

value for the undisturbed matrix 

material (without pores) is 

roughly more than 0.2, while 

for lesser values of the 

Poisson’s ratio of the undisturbed matrix material, the homogenized Poisson’s ratio is 

increasing.  

 It should be noted that 

the limiting value of the porous 

ratio for spherical pores and 

FCC lattice is about 0.740 (this 

lattice does not lead to the 

induced anisotropy due to 

regular package of pores). It 

can be expected that tending to 

the limiting value 0.740 for the porous ratio, all the curves will merge at Poisson’s ratio value 

~0.2.  

 Acknowledgements. The authors thank the Russian Foundation for Basic Research (Grant 
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Fig. 1 Homogenized Poisson’s ratio ν0 for FCC spatial 

lattice 

         and spherical pores vs. volume porous ratio: 

         1 – Homogenized Poisson’s ratio for the matrix 

material 

              with the initial Poisson’s ratio (without pores) 0.0; 

         2 – 0.1;     3 – 0.2;     4 – 0.3;     5 – 0.4  
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