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 1. Introduction. Solution of the boundary-value problems by boundary 

integral equation methods needs fundamental solutions. For isotropic elastic medium 

solution of equations of equilibrium in the 3-dimensional case was constructed by 

Thomson (Lord Kelvin) (1848). Presumably, the first attempt for justification of 

Kelvin’s heuristic procedure for the fundamental solution construction was undertaken 

by Somigliana (1885). Much later the main properties of the fundamental solution 

were studied by a specially developed limiting process by Sternberg et al. (1955, 1964) 

and Turteltaub and Sternberg (1968).  

 The first attempt to construct fundamental solution for anisotropic media 

goes back to Fredholm (1900) and Zeilon (1911), who used the Fourier transformation 

for symbol construction, but failed in inverting of Fourier transformation. By use of 

the Fourier transformation and Levi’s method for reducing number of parameters, the 

fundamental solutions in a closed form were obtained by Kupradze and Basheleishvili 

(1954), Burchuladze (1960, 1963), Rizzo and Shippey (1970), Hatiashvili (1982) for 
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the two-parametric problems, when the three-dimensional displacement field depends 

upon two spatial variables (for media with monoclinic symmetry these are plane and 

anti plane problems). Construction of a parametrics for cylindrically anisotropic 

axially symmetric bodies was done by Kuznetsov (1990). 

 Analytical solutions for some specific kinds of elastic anisotropy in the 3-

dimensional case were constructed by Kröner (1953), Basheleishvili (1957), 

Kahniashvili (1957). In the case of weak anisotropy, asymptotic formulas for 

fundamental solution were obtained by Leibfrid (1957). Some properties of the 

fundamental solution for media with arbitrary elastic anisotropy, but without it explicit 

construction, were studied by Sáenz (1953). It should be noted that analytical 

expressions for the fundamental solution in 3  were obtained only for one narrow 

subclass of elastic orthotropy, which includes transverse isotropy. 

 Two principally different numerical methods are used for constructing 

fundamental solution in the 3-dimensional case and media with arbitrary elastic 

anisotropy: (i) method based on Radon’s transformation; and, (ii) multipolar 

decomposition method. 

 Method based on Radon’s transformation was proposed by Lifshits and 

Rozentsveig (1947). The analogous method later was used by Synge (1957) who 

exploited McConnell’s approach (1951); Willis (1965); Vogel and Rizzo (1973); 

Wilson and Cruse (1978); Natroshvili (1984), whose work along with constructing 

fundamental solution, contains theoretical analysis of normal solvability and the 

Fredholm properties of the boundary integral operators. Radon’s transformations were 

also used by Kapanadze (1987); Deb, Henry and Wilson (1991); Schclar (1994), 

whose work along with Radon’s transformations contains description of a new method 

for solving boundary integral equations based on the theorem of duality for singular 

solutions. Sometimes the method based on Radon’s transformations is referred to as 

the plane wave decomposition method, see John (1955). Numerical experiments 

carried out by Wilson and Cruse (1978) showed that this method is highly time 

consuming from computational point of view. To decrease computing time, these 

authors proposed to use spline approximations on the unit sphere.  

 Analysis of theoretical problems for potential type operators related to the 

second order elliptic differential equations and the corresponding boundary integral 
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operators is going back to Somigliana (1885), Fredholm (1900), and Tricomi (1927). 

For matrix differential operators of anisotropic elasticity the corresponding analysis 

was developed by Natrishvili (1984); see also Burchuladze and Gegelia (1985); 

Kuznetsov (1991); Natroshvili (1995), Jentsch and Natroshvili (1995); Jentsch, 

Natroshvili and Wendland (1998), (1999). 

 Construction of the fundamental solution can be done also by the 

multipolar expansions (expansions in spherical harmonics on the unit sphere). The idea 

of such expansions is due to Fredholm (1900) and Zeilon (1911). However, lack of the 

appropriate technique on inversion of the Fourier transforms of (homogeneous) 

symbols corresponding to operators with weak singularity did not allow to obtain final 

expressions for the fundamental solutions at that time. Similar difficulties were 

observed by Kroner (1953), Kinoshita and Mura (1956) and Bross (1960, 1965, 1968). 

Some ideas for use of harmonic polynomials for construction of the fundamental 

solution were given by Bezier (1967). 

 The complete theory of multipolar expansions for construction of singular 

operators was developed by Calderon and Zygmund (1957) and Mikhlin (1962). 

Analogous theory for operators with weak singularity was developed by Bochner 

(1955). Later method of multipolar decompositions was extrapolated by Kuznetsov 

(1989, 1995a) for construction of the fundamental solutions for equations of 

equilibrium, equations of free vibrations (Kuznetsov, 1996) and construction of some 

singular solutions of mechanics which correspond to kernels of the double-layer 

potentials and their derivatives (Kuznetsov, 1995a, b). Numerical algorithms based on 

the multipolar expansions are discussed by Perelmuter and Kuznetsov (1995). 

Theoretical considerations show (see Kuznetsov, 1989, 1995a) that the multipolar 

expansion method has advantage in computation time in comparison with methods 

based on Radon’s transformation.  

 The following analysis is concerned with theoretical and numerical aspects 

of the multipolar expansion method for constructing fundamental and singular 

solutions of equations of equilibrium for 3D media with arbitrary elastic anisotropy.  
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 2. Basic notations. For an anisotropic elastic medium equilibrium 

equations in terms of the displacement field can be written in the form: 

 

 0)(div)()( =⋅∇⋅−≡∂ xuCxuA xxx , (1) 

 

where A is the 3 3×  matrix differential operator of the equilibrium equations; u is the 

displacement vector field, and C is the fourth-order elasticity tensor, assumed to be 

positive definite: 

 

 
3 3 , 0

0
∈ ⊗ ≠

∀ ⋅⋅ ⋅ ⋅ >
A A

A A C A . (2) 

 

The medium itself is assumed to be homogeneous and hyperelastic. The latter ensures 

symmetry of the elasticity tensor regarded as operator acting in the six-dimensional 

space of symmetric second-order tensors: 

 

 
3 3, ( )

,
sym∈ ⊗

∀ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅
A B

A B A C B B C A . (3) 

 

 Conditions (2) and (3) allow us to decompose the elasticity tensor (regarded 

as the linear operator in the 6-dimensional space of symmetric second-order tensors in 
3 ) in the following tensorial product:  

 

 
6

1
, 0α α α α

α=

= λ ⊗ λ >∑C S S , (4) 

 

where αS  are symmetric second-order tensors forming an orthonormal set with respect 

to Euclidian norm: 

 

 αββα δ=⋅⋅ SS . (5) 
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In (5) αβδ  is the Kronecker symbol. 

 Application of the integral Fourier transform  

 

 
3

3^ ( ) ( ) exp( 2 ) ,
R

g g i dx= − π ⋅ ∈∫ x xξ ξ ξ  

 

to the differential operator in Eq. (1) gives matrix symbol of the operator A : 

 

 ξξξ ⋅⋅π= CA 2)2()(^ . (6) 

 

It follows from (2) and (3) that symbol ^A  is strongly elliptic: 

 

 
3, , , 0
, ^ ( ) 0

∈ ≠

∀ ⋅ ⋅ >
a a

a a A a
ξ ξ

ξ ξ . (7) 

 

Expression (6) shows also that symbol ^A  is (positive) homogeneous of degree 2 and 

analytic in 3 . 

 The definition of the fundamental solution implies the following identity:  

 

 IEA =⋅ )(^)(^ ξξ , (8) 

 

where ^E  is the symbol of the fundamental solution, and I is the unit (diagonal) 

matrix. The identity (8) allows us to represent the symbol ^E  in the form 

 

 )(^det/)(^)(^ 0 ξξ=ξ AAE , (9) 

 

where )(^0 ξA  is the cofactor of the symbol ^ ( )ξA . Expression (9) shows that 

symbol ^E  is also strongly elliptic, positively homogeneous of degree –2, and 
3 3 3^ ( ) ( \ 0; )C∞ξ = ⊗E . 

 Fourier transform inversion applied to expression (9) gives 
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 PROPOSITION 2.1. Fundamental solution E  of the equilibrium equations (1) 

is positively homogeneous of degree –1 and 3 3 3( ) ( \ 0; )C∞∈ ⊗E x . 

 

 

 

 3. Multipolar expansions for fundamental solution. Let symbol ^E  be 

expanded in a series of spherical harmonics on the unit sphere 3S ⊂ : 

 

 ξξξξξξ /),()(^
,...2,0

2 =′′= ∑ ∑
∞

= −=

− k
n

n

n

nk
nk YEE , (10) 

 

where k
nY  are spherical harmonic of degree n and of the order k, connected to the 

associated Legendre functions k
nP  in the following way: 

 

 ϕ×θ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

π
+

=′ ikk
n

k
n eP

kn
knnY )(cos

)!(
)!(

4
)12()(

2/1

ξ . (11) 

 

In expression (11) spherical and Cartesian coordinates are connected by the following 

relation: 

 

 )cos;cossin;sin(sin θϕθϕθ=′ξ . 

 

 Formulas for computing the associated Legendre functions are presented in 

the Appendix. It should be noted that spherical harmonics (11) form the complete 

orthonormal set in )(2 SL . Matrix coefficients nkE  in (10) are determined by 

integration over the unit sphere in 3 : 

 

 ^ ( ) ( )k
nk n

S

Y d′ ′ ′= ξ∫E E ξ ξ , 



Authors proof reading 
QUARTERLY OF APPLIED MATHEMATICS, VOLUME LXIII (2005), NUMBER 3, PAGES 000-000 

Sergey V. Kuznetsov, Fundamental and singular… 
__________________________________________________________________ 

___________________________________________________________________________________ 

QUARTERLY OF APPLIED MATHEMATICS, VOLUME LXIII (2005), NUMBER 3, PAGES 000-000 

 

7

 

where ϕθθ=ξ′ ddd sin  is the Lebesgue measure induced on S . 

 

 

 REMARK 3.1. Summation in (10) is done on harmonics of the even order 

only. That is because: (i) the symbol ^E  is strongly elliptic; and, (ii) expressions (8) 

and (9) ensure positive homogeneity of the symbol. Indeed, spherical harmonics of the 

even order are even on S , while harmonics of the odd order are odd: 

( ) ( )k k
n nY Y′ ′− = −ξ ξ . 

 

 

 PROPOSITION 3.1 (Kuznetsov, 1989). Series in (10) converges to the symbol 

^E :   a) in a weak topology in 3 3 3( ; )′ℑ ⊗ , where ′ℑ  is the space of tempered 

distributions in 3 ;   b) in 2 3 3( ; )L S ⊗ ;   c) in 3 3 3( \ 0; )cC ⊗ , where cC  

stands for topology of the compact convergence in 3 \ 0 . 

 

 Proof of Proposition 3.1 follows directly from the right-hand side of (9) 

ensuring symbol ^E  to be positive homogeneous of degree –2 and (real) analytic 

everywhere in 3 \ 0 . 

 

 

 Now, application of Bochner’s inverting formula (see, Stein, Ch.III, §3, 

Theorem 5) to terms in (10) gives the fundamental solution obtained also in the form 

of multipolar series: 

 

 xxxxExxE /),()(
,...2,0

1 =′′γ= ∑ ∑
∞

= −=

− k
n

n

n

nk
nkn Y , (12) 

 

where parameters nγ  known as Bochner’s multipliers, can be easily computed by the 

following formula (Stein, Ch.III, §3): 
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)(

)(
)1(

2
2

2
1

2/12/
+

+

Γ

Γ
π−=γ n

n
n

n . (13) 

 

 Expression (13) and Stirling’s expansion for Γ -function allow us to obtain 

the following asymptotic formula: 

 

 ( ) ∞→=γ nOn ,1 . (14) 

 

 Since the Fourier transformation sets topological isomorphism in the spaces 
3 3 3( ; )′ℑ ⊗ , 2 3 3( ; )L S ⊗  and it is continuous in the space 
3 3 3( \ 0; )cC ⊗ , Proposition 3.1 implies: 

 

 

 PROPOSITION 3.2. Series in the right side of (12) converges to the 

fundamental solution:   a) in the weak topology in 3 3 3( ; )′ℑ ⊗ ;   b) in 
2 3 3( ; )L S ⊗ ;   c) in 3 3 3( \ 0; )cC ⊗ . 

 

 

 REMARK 3.2.  a) The following notation for correspondence between 

Cartesian coordinates of the affine vector x  and its spherical coordinates ϕθ,  will be 

needed: 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

=ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=θ

xx
13 arcsin,arccos xx , 

where );;( 321 xxx≡x  and 

);( 21 xx=′x , refer to Fig. 1. These 

formulas for angles ϕθ,  are valid 

for any 0≠x ; 

 

 

 b) It is known that summation of a harmonic series with coefficients having 

small errors may lead to an ill-posed problem in the specific pairs of metric spaces. To 

overcome possible difficulties a regularization method was proposed by Kuznetsov 

(1989). However, numerical experiments with some real anisotropic materials (see 

Perelmuter and Kuznetsov, 1995) revealed relatively fast convergence of multipolar 

series and numerical stability, so there was no need in applying regularization 

techniques. 

 

 

 

 4. Multipolar expansions for singular operators. When (i) the stress field 

produced by a single-layerd potential, or (ii) the displacement field produced by the 

double layer potential are needed, appropriate spatial derivatives can be obtained 

directly from the multipolar expansions of the principle symbol corresponding to the 

composition of the surface traction operator and the fundamental solution (when such 

a composition is restricted to the surface where the density is located, this produces a 

singular operator). 

 Application of the Fourier transformation to the composition  

 

 ( ) ( , ) ( )y y≡ ∂ ⋅V y T E yν , (15) 

 

 
θ 

ϕ

X 

X3 

X2 X1 Fig.1 
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where ( , )y y y y∂ ≡ ⋅ ⋅∇T Cν ν  is the surface traction operator, produces the following 

matrix principle symbol: 

 

 ( )^ ( , ) 2 ^ ( )yi= π ⋅ ⋅ ⋅V y C Eξ ν ξ ξ . (16) 

 

In (15), (16) yν  denotes field of the unit normals to the supporting surface (surface 

where the potential densities are located). In obtaining (16) the usual technique of 

“freezing” coefficients is used. 

 

 

 REMARK 4.1. a) Kernel (15) produces an important type of operators, called 

the double layer potentials (see, Kupradze et al., Ch.II, §4): 

 

 ( )[ ]( ) ( ) ( , ) ( )y y dy′ ′
∂Ω

′ ′ ′≡ ⋅ ∂ ⋅ −∫V f x f y T E x yν , (17) 

 

where ∂Ω  is a 2-dimensional piecewise smooth manifold in 3 ; f  is an integrable on 

∂Ω  function, and dy′  is the Lebesgue measure concentrated on ∂Ω . It should be 

noted that field y ′ν  is defined only for regular points of ∂Ω . When ∈∂Ωx , the 

integral in (17) is evaluated as the Principle Value (P.V.) integral. 

 b) In the subsequent analysis kernels and the corresponding operators will 

be denoted by the same letter. 

 

 

 Some obvious properties of the principle symbol ^V  are stated in the 

following proposition 
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 PROPOSITION 4.1. At any fixed regular point ∈∂Ωy , the principle symbol 

^ ( , )V y ξ  is   a) real-analytic in 3 \ 0  with respect to ξ -variable;   b) homogeneous 

of degree –1 with respect to ξ -variable, but not positive homogeneous. 

 

 

 Multipolar expansion of this symbol yields  

 

 1

1,3,...

^ ( , ) ( ) ( ), /
n

k
nk n

n k n

Y
∞

−

= =−

′ ′= =∑ ∑V y V yξ ξ ξ ξ ξ ξ , (18) 

 

where matrix coefficients nkV  are determined by integration of the symbol ^V  on the 

unit sphere: 

 

 ( ) ^ ( , ) ( )k
nk n

S

Y d′ ′ ′= ∫V y V y ξ ξ ξ . 

 

Series in the right-hand side of (18) contains harmonics of the odd order only; this 

follows from Proposition 4.1.b and Remark 3.1. 

 

 

 PROPOSITION 4.2. a) At any fixed regular point ∈∂Ωy  series in the right-

hand side of (18) converges to the symbol ^V :   a) in the weak topology in 
3 3 3( ; )′ℑ ⊗ ;   b) in 2 3 3( ; )L S ⊗ ;   c) in 3 3 3( \ 0; )cC ⊗ . 

 

 

 Proof of Proposition 4.2 is analogues to the proof of Proposition 3.1. 

 

 

 Application of Bochner’s inverting formula to the terms in expansion (18) 

gives kernel V : 
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 2

1,3,...

( , ) ( ) ( ), /
n

k
n nk n

n k n

Y
∞

−

= =−

′ ′ ′= γ =∑ ∑V y x x V y x x x x , (19) 

 

where coefficients nkV  depend upon “frozen” variable y , and multipliers nγ′  admit the 

following representation (Stein, Ch.III, §3): 

 

 
2

1/ 2 2
1

2

( )
( )

n
n

n n
i

+
−

+

Γ
′γ = π

Γ
 (20) 

 

Comparing (18), (19) shows that the left-hand side of (19) is real valued and real 

analytic in 3 \ 0 . 

 Similarly to the fundamental solution, multipolar series (19) has the 

following properties: 

 

 

 PROPOSITION 4.3. At any fixed regular point ∈∂Ωy  series in the right-hand 

side of (19) converges to the distribution defined by its kernel V :   a)  in the weak 

topology in 3 3 3( ; )′ℑ ⊗ ;   b) in  2 3 3( ; )L S ⊗ ;   c) in 3 3 3( \ 0; )cC ⊗ . 

 

 

 REMARK 4.2. a) The distribution identified with its kernel V  and acting on 

functions with the non-thin support in 3  represents operator with weak (integrable) 

singularity, while restriction of this operator on functions having support on a two-

dimensional manifold, forces to regard it as a singular operator; 

 b) From computational point of view it is more convenient to expand in 

multipolar series the tensorial symbol 

 

 ( )^ ( ) 2 ^ ( )i′ = π ⋅ ⋅V C Eξ ξ ξ ,  (21) 
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which is the three-valent symbol. Expanding such a symbol into multipolar series, then 

applying Bochner’s inverting formula, and making convolution with the field of the 

unit normals ν , produces the desired kernel V . 

 

 

 

 5. Multipolar expansions for hyper-singular operators. In this section 

construction of the composition of the surface traction operator and the operator of the 

double-layer potential is regarded: 

 

 ( , , ) ( , ) ( , )t
z x≡ ν ∂ ⋅W z y x T V y x , (22) 

 

where W  is kernel of the corresponding pseudodifferential (hyper-singular) operator; 

upper index t  stands for transposition of the matrix-valued operator V . 

 “Freezing” variables and applying Fourier transformation to (22), produces 

the following amplitude (see, Treves, Ch.1, §2 for the definition of amplitudes): 

 

 ( ) ( )2^ ( , ; ) (2 ) ^ ( )z y= − π ⋅ ⋅ ⋅ ⋅ ⋅ ⋅W z y C E Cξ ν ξ ξ ξ ν . (23) 

 

In obtaining (23) we assigned different variables appearing in the “frozen” coefficients 

in (16) and (22). 

 Routine procedure similar to one exploited for obtaining (17), (19) 

produces the kernel W  in the form of multipolar series: 

 

 3

0,2,...

( , , ) ( , ) ( ), /
n

k
n nk n

n k n

Y
∞

−

= =−

′′ ′ ′= γ =∑ ∑W z y x x W z y x x x x , (24) 

 

where in contrast to (17), (19) series in the right-side of (24) contains harmonics of the 

even order only, that is because of positive homogeneity of the amplitude with respect 

to ξ -variable. Matrix coefficients nkW  are determined by integration of the amplitude 

(23) on the unit sphere in 3  similarly to obtaining nkV . 
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 Bochner’s multipliers nγ ′′  in (24) have the following form: 

 

 
)(

)(
)1(

2

2
3

2/32/
n

n
n

n
Γ

Γ
π−=γ ′′

+
−  (25) 

 

 The following Proposition is analogues to Proposition 4.3: 

 

 

 PROPOSITION 5.1. At any fixed regular points , ∈∂Ωy z  series in the right-

hand side of (24) converges to the distribution associated with its kernel W :   a)  in 

the weak topology in 3 3 3( ; )′ℑ ⊗ ;   b) in 2 3 3( ; )L S ⊗ ;   c) in 
3 3 3( \ 0; )cC ⊗ . 

 

 

 REMARK 5.1. a) At fixed regular points , ∈∂Ωz y , operator W  acting on 

functions with the non-thin support in 3 , becomes an operator with strong (non-

integrable) singularity. Kernel of the operator W  can be represented in the form 

 

 3
0 1( , , ) ( , ) ( ) ( , , ), , ,= δ + ∈∂Ω ∈W z y x W z y x W z y x z y x , (26) 

 

where 0W  is a matrix piecewise-smooth function defined on the manifold ∂Ω ; )(xδ  

is the delta-function in 3 ; and 1W  is the kernel of a singular operator (with respect to 

x  –variable) having zero mean value: 

 

 1
,

, ( , , ) 0
S

dx
∈∂Ω

′ ′∀ =∫
z y

z y W z y x . (27) 

 

Condition (27) is due to decomposition (26) where the first term in the right-hand side 

is responsible for non-zero mean value. 
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  b) Restriction of the operator W  on functions having support on the 

manifold ∂Ω , forces to regard it as the hyper-singular operator. By analogy with 

Remark 4.1.a, we can define 

 

 ( )( )[ ]( ) F.P. ( , ) ( ) ( , ) ( ) ,x x y y dy′ ′
∂Ω

′ ′ ′= ∂ ⋅ ⋅ ∂ − ∈∂Ω∫W f x T f y T E x y xν ν , 

 

where the corresponding hyper-singular integral is evaluated as the finite part (F.P.) 

integral (see, Edwards, Ch.5, §5). An example of the explicit regularization technique 

for evaluating the F.P. integral is given in (Kuznetsov, 1995b). 

 c) From computational point of view it is more convenient to expand the 

following tensorial symbol in the multipolar series: 

 

 ( )2^ ( ) (2 ) ^ ( )′ = − π ⋅⋅ ⊗ ⊗ ⋅⋅W C E Cξ ξ ξ ξ , (28) 

 

where ^W′  is the four-valent symbol. Applying to thus obtained multipolar series 

Bochner’s inverting formula and then taking convolution from both sides with the 

vector fields ,z yν ν , produces the desired kernel W . 

 

 

 

 6. Error estimates. Suppose that: (i) multipolar series (10) and (12) are 

truncated and contain harmonics of degree up to N ; and, (ii) matrix coefficients nkE  

contain computational errors, except coefficient 00E  (solid harmonic), which is 

assumed to be defined precisely. Substituting such a truncated expansion for the 

fundamental solution in the equations of equilibrium (1) yields  

 

 ( ) ( ) ( ) ( )x N N∂ = δ +A E x x I K x  (29) 
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where ( )NE x  is the approximate fundamental solution due to truncation and 

computational errors, and ( )NK x  is a matrix residual operator.  

 

 

 REMARK 6.1. Approximate fundamental solution ( )NE x  is of class –2 in 

3 , this follows from the multipolar expansions (10), (12). Now, left-hand side of (29) 

ensures that operator NK  is of class 0 in 3 . 

 

 

 PROPOSITION 6.1. Operator NK  in the right-hand side of (29) is singular 

integral operator in 3 . 

 

 Proof. Fourier transformation applied to both sides of (29) gives  

 

 ^ ( ) ^ ( ) ( ^ ( ) ^ ( ))N N= ⋅ −K A E Eξ ξ ξ ξ  (30) 

 

In obtaining (30), relation (8) was used. Since the right-hand side of (30) is positive 

homogeneous of degree 0, and the operator NK  satisfies condition of zero mean value 

on the unit sphere (that is due to (29) and the condition (ii) preceding (29)), NK  

appears to be the singular operator in 3 . 

 

 

 The Plancherel theorem applied to the operator NK , shows that its 

(operator) 2L -norm can be majored by the corresponding ∞L -norm of the symbol ^
NK  

(see, Stein, Ch. II, §1, n. 1.4). Both norms are equivalent for scalar operators. Due to 

homogeneity of degree 0 of the symbol ^
NK , it is natural to evaluate ∞L -norm of this 

symbol on the unit sphere 3S ⊂ . 

 Let pq
NK  denotes the ,p q -component of the symbol ^

NK :  
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2
2

0,2,...

( ) (2 ) ( )

, 1, 2,3

N n
pq pq prst tq kr s
N nk n

n k n

K C E Y

p q

= =−

ξ ξ′ ′ξ = δ − π ξ
ξ

=

∑ ∑
, (31) 

 

where tq
nkE  are corresponding coefficients of the fundamental solution NE . Introducing 

scalar  

 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ′=∆ ∑

=∈ξ′≤≤

3

131
)(supsup

q

pq
N

Sp
N K , (32) 

 

which majorizes the spectral ∞L -norm of the symbol ^
NK  (see, Marcus and Mink, Ch. 

III, § 1.6.5), we obtain natural estimate for precision of the numerically constructed 

fundamental solution NE . In fact, due to (29), (32) and the Plancherel’s theorem, we 

have 2 2 2 2( , ) ( , )
( )N N x NL L L L

A∆ ≥ = ∂ − δK E I , where 2 2( , )L L  is the corresponding 

operator norm. 

 Numerical analysis developed by Kuznetsov (1989) showed that multipolar 

series rather rapidly converge for the tested kinds of elastic anisotropy. For example, a 

good accuracy with the error estimate 510N
−∆ ≈  has been achieved for the following 

orthotropic material:  

 

 

074.0;068.0;082.0

;091.1

;210.1;209.1

;036.5;429.2;091.1

313123231212

3333

22332222

113311221111

===

=

==

===

CCC

C

CC

CCC

 

 

by the truncated series ( 6=N ) corresponding to 49 spherical harmonics. 

Computations were carried out with the real numbers having mantissa with ~15 

decimal digits. Higher accuracy with 810N
−∆ ≈  was achieved at 12=N , while further 
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increasing parameter N  up to 20 harmonics did not reveal any improvements of the 

accuracy, that was because of the irreducible computational errors. 
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APPENDIX 
 
Formulas for Legendre polynomials and functions 
 The following formula, which is due to Hobson (1931), gives Legendre 
polynomials in the convenient for computational purposes form: 
 

 kn
nE

k

k
n

n x
knknk

knxP 2
)2/(

0 )!2()!(!
)!22()1(2)( −

=

− ∑ −−
−−

=  (A1) 

 
where )2/(nE  denotes the entire part of 2/n .  
 On obtaining coefficients of the polynomial )(xPn , the associated 

Legendre functions k
nP  can be computed by the following analytical formulas 

 

 )()1()1()( 2/2 xPxxP ndx
dkkk

n k

k
−−=  (A2) 

 
 Combination of (A1) and (A2) produces 
 

 

kmn
knE

m

m

kknk
n

x
kmnmnmnm

mnmn

xxP

−−
−

=

−

∑ −−−−
−−−

×−−=

2
)2/(

0

2/2

)!2()!2()!(!
)!2()!22()1(

)1()1(2)(
 (A3) 

 
 The associated Legendre functions k

nP  can also be obtained by 
combination of two recurrence relations, which are mainly due to Magnus and 
Oberhettinger (1948): 
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[ ]

10,1

)()()()12()1()( 1
1

1

−≤≤≤

+−++−= −
−

+

nkn

xPknxxPnknxP k
n

k
n

k
n

 (A4) 

and 
 

20

)()1())1()1(()()1(2)()1( 2/12122/12

−≤≤

−+−+−+=− ++

nk

xPxkknnxPxkxPx k
n

k
n

k
n

  (A5) 
where (A4) can be applied for computing 1

nP , while (A5) for , 1k
nP k > .  

 It can easily be deduced from (A2) that 1=n
nP ; 0

nP  coincides with the 

corresponding Legendre polynomial, and 0≡k
nP  at nk > .  
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