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Abstract. Existence of surface waves of non-Rayleigh type propagating 
on some anisotropic elastic half-spaces is proved. Conditions for 
originating the non-Rayleigh type waves are analyzed. An example of a 
transversely isotropic material admitting a surface wave of the non-
Rayleigh type, is constructed. 

 
 
 1. Introduction. In our previous paper [1] it was shown that some anisotropic 
elastic materials exhibit property of non existence of the genuine Rayleigh waves: 
 

 
3

( )

1
( ) kir ct

k k
k

C e γ ⋅ + ⋅ −

=
= ∑ x n xu x m ν  (1.1) 

 
where kC  are complex coefficients determined up to a multiplier by the traction-free 
boundary conditions; km  are complex eigenvectors of the Christoffel equation, which 
will be introduced further; these eigenvectors correspond to complex roots kγ  of the 
characteristic polynomial; r  is the (real) wave number; ν  is an outward normal to the 
boundary Πν  of the half-space along which the surface wave propagates; ∈Πn ν  is the 
unit vector determining direction of propagation of the surface wave, and c  is the phase 
speed. The terms  
 
 ( )( ) kir ct

k ke γ ⋅ + ⋅ −≡ x n xu x m ν   (1.2) 
 
are called partial waves.  
 As was shown in [1], the existence of the “forbidden” directions or “forbidden” 
planes along which the genuine Rayleigh wave cannot propagate is due to appearing the 
Jordan blocks in a specially constructed 6 6× -matrix associated with the Christoffel 
equation. The following analysis reveals that the situation regarded in [1] appears to be 
more complicated. The Jordan blocks in the regarded matrix lead to a qualitative change 
of the structure of the partial waves (1.2) and, while the genuine Rayleigh wave at the 
situation considered in [1] does not exist, there remains an exponentially attenuating with 
depth surface wave of the non-Rayleigh type. 
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 2. Basic notations. Equations of motion for anisotropic elastic medium can be 
written in the form 
 
 ( , ) div 0x t x x∂ ∂ ≡ ⋅⋅∇ −ρ =A u C u u  (2.1) 
 
where u is the displacement field; ρ  is the density of a medium; and C  is the fourth-order 
elasticity tensor assumed to be positive definite: 
 
 

3 3( ), 0 , , ,
( ) 0ijmn

ij mn
sym R R i j m n

A C A
∈ ⊗ ≠

∀ ⋅⋅ ⋅ ⋅ ≡ >∑
A A

A A C A  (2.2) 

 
 The sign “ ⋅ ” in (2.1), (2.2) and henceforth means the scalar multiplication in the 
corresponding unitary or Euclidian vector space.  
 Substituting partial waves (1.2) in Eq. (2.1) produces the Christoffel equation: 
 
 2( ) ( ) 0k k kc⎡ ⎤γ + ⋅ ⋅ + γ −ρ ⋅ =⎣ ⎦n C n I mν ν  (2.3) 

 
where I  is the unit diagonal matrix. Equation (2.3) can be written in the equivalent form: 
 
 2det ( ) ( ) 0k k c⎡ ⎤γ + ⋅ ⋅ + γ −ρ =⎣ ⎦n C n Iν ν  (2.4) 

 
The left-hand side of Eq. (2.4) represents a polynomial of degree 6 with respect to kγ .  
 
 
 REMARK 2.1. It can be shown, see [1], that if the phase speed does not exceed the so 
called lower limiting speed ( lim

3c ): 
 
 lim

3c c< , (2.5) 
 
then all the roots of Eq. (2.3) are complex with Im( ) 0kγ ≠ . The inequality (2.5) ensures 
that three partial waves (1.2) with Im( ) 0kγ <  attenuate with depth in a “lower” half-space 
at ( ) 0⋅ <xν . Only attenuating with depth partial waves, as being physically reasonable, 
will be considered further. 
 
 
 3. Six-dimensional formalism. Following [1], a more general representation for the 
partial wave than (1.2), will be considered: 
 
 ( )( ) ir ctx e ⋅ −′′ n xv  (3.1) 
 
where x ir′′ = ⋅xν  is the dimensionless complex coordinate, ( )x′′v  is an unknown vector 
function, and the exponential multiplier in (3.1) corresponds to propagation of the plane 
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wave front along the direction n  with the phase speed c . Substituting representation (3.1) 
into Eq. (2.1) yields the following system of ordinary differential equations: 
 

( )2 2( ) ( ) ( ) ( ) 0x x c x′′ ′′ ′′⋅ ⋅ ∂ + ⋅ ⋅ + ⋅ ⋅ ∂ − ⋅ ⋅ − ρ =C C n n C n C n I vν ν ν ν  (3.2) 

 
Direct analysis of system (3.2) is rather difficult, and reduction to the first-order system 
can simplify it.  
 Introduction of a new vector-function x′′= ∂w v  allows us to reduce the second-

order system (3.2) in 3C  to the first-order one in 6C : 
 

 6x′′
⎛ ⎞ ⎛ ⎞

∂ = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v v
R

w w
 (3.3) 

 
In (3.3) the complex six-dimensional matrix 6R  has the form 
 

 6
⎛ ⎞

= ⎜ ⎟− −⎝ ⎠

0 I
R

M N
 (3.4) 

 
where three-dimensional matrices M  and N  have the form 
 

 
1 2

1

( ) ( )

( ) ( )

c−

−

= ⋅ ⋅ ⋅ ⋅ ⋅ − ρ

= ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

M C n C n I

N C C n n C

ν ν

ν ν ν ν
 (3.5) 

 
In (3.4) I  stands for the unit (diagonal) matrix in the three-dimensional space.  
 A surjective homomorphism 6 3: C Cℑ → , such that  
 
 ( , )ℑ =v w v  (3.6) 
 
will be needed for the subsequent analysis.  
 The following Proposition takes place [1]: 
 
 
  PROPOSITION 3.1. Let lim

3(0; )c c∈ :  
 a) Spectrum of the matrix 6R  coincides with the set of all roots of polynomial (2.4); 

 b) If γ  is a complex eigenvalue and ( , )′ ′′=m m m , 3, C′ ′′∈m m  is the 
corresponding six-dimensional eigenvector of the matrix 6R , then γ  is also an eigenvalue 

with the corresponding eigenvector ( , )′ ′′=m m m ; 
 c) The matrix 6R  admits the following Jordan normal forms 
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⎛ ⎞γγ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ γγ ⎝ ⎠⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟γ ⎛ ⎞γ⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟γ⎜ ⎟ γ⎝ ⎠⎜ ⎟⎜ ⎟γ γ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟γ γ⎝ ⎠ ⎝ ⎠

J J  

 

1

1

1(III)
6

1

1

1

1 0
0 1
0 0

1 0

0 1

0 0

γ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟γ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟γ⎝ ⎠⎜ ⎟= ⎛ ⎞⎜ ⎟γ

⎜ ⎟⎜ ⎟
γ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟γ⎝ ⎠⎝ ⎠

J  (3.7) 

 
 d) According to the Jordan normal forms the following three types of 
representations for surface waves occur: 
 (i) for the Jordan normal form (I)

6J , the corresponding representation is given by 
(1.1);  
 (ii) for the Jordan normal form (II)

6J , the representation is as follows: 
 

 

1

1

3

( )
1 2 1

( )
2 2

( )
3 3

( ) ( ) ir ct

ir ct

ir ct

C ir C e

C e

C e

γ ⋅ + ⋅ −

γ ⋅ + ⋅ −

γ ⋅ + ⋅ −

′= + ⋅ +

′ +

′

x n x

x n x

x n x

u x x m

m

m

ν

ν

ν

ν

 (3.8) 

 
where 3

1 1( ) C′ = ℑ ∈m m , and 1m  is the eigenvector of 6R  corresponding to the 

eigenvalue 1γ ; 3
2 2( ) C′ = ℑ ∈m m , and 3

2 C∈m  is the generalized eigenvector associated 

with 1m , and the eigenvector 6
3 C∈m  corresponds to the eigenvalue 3γ ;  

 (iii) for the Jordan normal form (III)
6J , the representation is as follows: 

 

 

1

1

1

( )21
1 2 3 12

( )
2 3 2

( )
3 3

( ) ( ( ) )

( )

ir ct

ir ct

ir ct

C ir C C ir e

C ir C e

C e

γ ⋅ + ⋅ −

γ ⋅ + ⋅ −

γ ⋅ + ⋅ −

′= + ⋅ + ⋅ +

′+ ⋅ +

′

x n x

x n x

x n x

u x x x m

x m

m

ν

ν

ν

ν ν

ν  (3.9) 

 
3

1 1( ) C′ = ℑ ∈m m , and 1m  is the eigenvector corresponding to the eigenvalue 1γ ; and 
6

2 3, C∈m m  are the generalized eigenvectors associated with 1m . 
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 COROLLARY. For any of the Jordan normal forms of the matrix 6R  the three-
dimensional components ,k k′ ′′m m  of the (proper) eigenvector km , satisfy the equations 
 

 ( )2 0

k k k

k k k

′′ ′= γ

′γ + γ + ⋅ =

m m

I N M m
 (3.10) 

 
 Proof. When the matrix 6R  has no Jordan blocks, the solution of Eq. (3.3) in view 

of (3.4) leads to Eqs. (3.10). Thus, the component k′m  belongs to the kernel space of the 

matrix ( )2
k kγ + γ +I N M . 

 
 
 4. Construction of the generalized eigenvector for (II)

6J . In view of [2] the 
solution of Eq. (3.3) corresponding to a Jordan block of the second rank can be 
represented in the form 
 

 ( ) ( ) ( )( ) 11 1 1 2 1 1 2 2, , , xC C x e ′′γ⎛ ⎞′ ′′ ′ ′′ ′ ′′′′+ +⎜ ⎟
⎝ ⎠

m m m m m m  (4.1) 

 
where as before x ir′′ = ⋅xν .  
 
 
 PROPOSITION 4.1. a) The three-dimensional components 1 1,′ ′′m m  of the genuine 
eigenvector satisfy Eqs. (3.10); 
 b) Components 2 2,′ ′′m m  of the generalized eigenvector satisfy the following 
equations: 
 

 
( ) ( )2

1 1 2 1 1

2 1 1 2

2′ ′γ + γ + ⋅ = − γ + ⋅

′′ ′ ′= + γ

I N M m I N m

m m m
 (4.2) 

 
 c) At lim

3(0; )c c∈  the matrix ( )12γ +I N  is not degenerate; 

 d) At lim
3(0; )c c∈  vectors ( )1 12 ′γ + ⋅I N m  and 1 ( )′ ⋅ ⋅ ⋅m Cν ν  are orthogonal.  

 
 
 Proof. Conditions a) and b) flow out by direct substituting the solution (4.1) into Eq. 
(3.3). 
 To prove c) it is sufficient to demonstrate that the matrix 
 
 ( )1 1( ) 2 2 ( ) ( )⋅ ⋅ ⋅ γ + = γ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅C I N C C n n Cν ν ν ν ν ν  (4.3) 
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is not degenerate. Considering multiplication of the right-hand side of (4.3) by any 
nonzero conjugate complex vectors 3, C∈a a  and accounting Remark 2.1, which ensures 

1Im( ) 0γ ≠ , we arrive to 
 

 
( )( )1

1

Im 2 ( ) ( )

2 Im( )( ) 0

⋅ γ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ =

γ ⊗ ⋅ ⋅ ⋅ ⋅ ⊗ ≠

a C C n n C a

a C a

ν ν ν ν

ν ν
 (4.4) 

 
In obtaining (4.4) we took into consideration that ( )( )Im 0⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ =a C n n C aν ν , since 

the matrix ( )⋅ ⋅ + ⋅ ⋅C n n Cν ν  is (real) symmetric. The last inequality in (4.4) completes 
the proof of condition c). 
 To prove d) Eq. (4.2) can be transformed into equivalent one by multiplying both 
sides by the nondegenerate matrix ( )⋅ ⋅Cν ν , this gives 
 

 
( )

( )

2 2
1 1 2

1 1

( ) ( ) ( )

2 ( ) ( )

c ′γ ⋅ ⋅ + γ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ρ ⋅ =

′− γ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅

C C n n C n C n I m

C C n n C m

ν ν ν ν

ν ν ν ν
 (4.5) 

 
Now, the vector 1′m  belongs to the kernel space of the matrix in the left-hand side of Eq. 
(4.5), which flows out from Proposition 4.1.a. Moreover, the regarded matrix is complex 
symmetric, hence its left and right eigenvectors coincide. The latter allows us to write for 
the left-hand side of Eq. (4.5) 
 
 ( )2 2

1 1 1 2( ) ( ) ( ) 0c′ ′⋅ γ ⋅ ⋅ + γ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ρ ⋅ =m C C n n C n C n I mν ν ν ν  (4.6) 

 
Similarly, for the right-hand side of Eq. (4.5) 
 
 ( )1 1 12 ( ) ( ) 0′ ′⋅ γ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ =m C C n n C mν ν ν ν  (4.7) 
 
In view of (3.5), Eq. (4.7) completes the proof. 
 
 
 COROLLARY. In the factor-space ( )23

1 1/ KerC γ + γ +I N M , the vector 2′m  

admits the following representation  
 

 ( ) ( )
12

2 1 1 1 12
−

′ ′= − γ + γ + ⋅ γ + ⋅m I N M I N m  (4.8) 

 
 
 REMARK 4.1. a) At the regarded speed interval lim

3(0; )c c∈  the eigenvectors of the 
complex symmetric matrix appearing in Eq. (4.6) may not form a set of mutually 
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orthogonal vectors in 3C , in contrast to the mutually orthogonal eigenvectors of any real 
symmetric matrix. 
 b) For supersonic Lamb waves propagating with the phase speed exceeding the 
greatest limiting speed lim

1c , all eigenvalues of the matrix 6R  become real. Presumably, 
in such a case the condition c) of Proposition 4.1 and the subsequent Corollary can be 
violated. 
 
 
 5. Dispersion equation for (II)

6J . The traction-free boundary conditions on the 
surface Πν  can be written in the form: 
 

 0
∈Π

≡ ⋅ ⋅ ⋅∇ =
x

t C u
ν

ν ν  (5.1) 

 
Substituting the displacement field into Eq. (5.1) yields 
 

 
3

1
0k k

k
C

=
=∑ t  (5.2) 

 
where kt  are the partial surface traction. 
 The following two cases for the partial surface traction fields will be considered: 
 (i) For the Jordan normal form (I)

6J  and the representation (1.1), the partial surface 
tractions are of the form 
 
 ( ) ( )ir ct

k k k e ⋅ −′= γ ⋅ ⋅ + ⋅ ⋅ ⋅ n xt C C n mν ν ν  (5.3) 
 
 (ii) For the Jordan normal form (II)

6J  and the representation (3.8), the partial 
surface tractions are of the form 
 

 

( )
( ) ( )( )

( )

( )
1 1 1

( )
2 1 1 1 2

( )
3 3 3

ir ct

ir ct

ir ct

e

e

e

⋅ −

⋅ −

⋅ −

′= γ ⋅ ⋅ + ⋅ ⋅ ⋅

′ ′= γ ⋅ ⋅ ⋅ + γ ⋅ ⋅ + ⋅ ⋅ ⋅

′= γ ⋅ ⋅ + ⋅ ⋅ ⋅

n x

n x

n x

t C C n m

t C m C C n m

t C C n m

ν ν ν

ν ν ν ν ν

ν ν ν

 (5.4) 

 
 Equations (5.2) can be regarded as linear system with respect to the unknown 
coefficients kC . The existence of the nontrivial solution of Eqs. (5.2) is equivalent to 
vanishing of the following determinant: 
 
 1 2 3 0∧ ∧ =t t t  (5.5) 
 
Equation (5.5) provides a necessary and sufficient condition for the existence of the 
surface wave.  
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 Equation (5.5) is known as the dispersion equation despite the fact, that the phase 
speed determined by this equation does not depend upon the wave number, or the wave 
frequency. 
 
 
 6. Surface waves of non-Rayleigh type in transversely isotropic media.  Let the 
unit vectors , 1,2,3k k =e  form an orthogonal basis in 3R , and vector 1e  is normal to the 

νΠ -basal plane of a transversely isotropic medium. This ensures that vector 1e  and ν  
coincide. The corresponding elasticity tensor has the following components:  
 

 22

11 12 12

22 23

44

55

55

0 0 0
0 0 0
0 0 0

0 0
0

c c c
c c

c

c
c

c

 (6.1) 

 
where 144 22 232 ( )c c c= −  and the elasticity tensor is assumed to be positive-definite. 
 The following Proposition is needed for further analysis:  
 
 
 PROPOSITION 6.1. If the components of the elasticity tensor (6.1) satisfy the relation  
 

 

4 3
55 11 12 55 55 11 12

23 2 2 2
55 11 55 11 22 55 11 55 11 22 12

2
11 55 11 22 55 11 55 22 55 12

2
11 22 55 11 22 55 11 55

( 9 ) 2 ( 17 )

( 45 5 8 9 )

2 (5 12 4 5 )

(4 9 3 ) 0

c c c c c c c

c c c c c c c c c c c

c c c c c c c c c c

c c c c c c c c

− + − +

− − − + +

− − − +

− − =

 (6.2) 

 
Then 
 a) At the parameter 2x c= ρ  determined by the polynomial equation 
 

 
23 2

11 11 55 11 22 55 12 11 55 11 22
2 2 2 2

11 22 12 11 22 11 55 12 55 11 22 12

( ) ( 2 2 )

( )( 2 ) ( ) 0

c c c x c c c c c c c c x

c c c c c c c c x c c c c

− + + − − +

− + − − − =
 (6.3) 

 
the Jordan normal form (II)

6J  appears in the structure of the matrix 6R ; 

 b) At any other value of the phase speed lim
3(0; )c c∈ , there is no genuine Rayleigh 

wave admitting the representation (1.1) and propagating on a traction-free boundary of the 
transversely isotropic half-space. 
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 Proof of Proposition 6.1 can be found in [1]. 
 
 
 REMARK 6.1. Equation (6.3) for a transversely isotropic half-space with the elasticity 
tensor, which does not satisfy Eq. (6.2), was obtained in [3] by application of the three 
dimensional complex formalism. It can be shown, that Eq. (6.3) has the unique positive 

root in the interval ( )2lim
30; c⎛ ⎞ρ⎜ ⎟

⎝ ⎠
.  

 
 
 Combining Eqs. (5.6) with (6.3) and substituting the corresponding values of the 
elasticity constants and the phase speed into Eqs. (3.10), (4.8), we arrive to 
 
 
 PROPOSITION 6.2. At the conditions (6.2), (6.3) of Proposition 6.1: 
  a) The eigenvalues kγ  in the representation (3.8) take the form: 
 

 

1/ 222
11 22 11 55 12 55 12

1
11 55

1/ 22
22 23

3
55

( ) 2
2

2
2

c c c c c c c ci
c c

c c ci
c

⎛ ⎞− + ρ − −
γ = − ⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞− − ρ
γ = − ⎜ ⎟⎜ ⎟

⎝ ⎠

 (6.4) 

 
 b) The corresponding amplitudes k′m  ( 1′m  and 3′m  are of the unit length) are of 
the form: 
 

 
( )
( )

1

2

3

,

,

p i

sp i

′ = β − α

′ = − α +β

′ = ×

m n

m n
m n

ν

ν

ν

 (6.5) 

 
where  
 

 
1/ 41/ 4 22

22

55 11
1 , c cc

c c
⎛ ⎞⎛ ⎞ − ρρ

α = − β = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.6) 

 
p  is the normalization factor: 

 

 ( ) 1/ 22 2p
−

= α + β  (6.7) 

 
and the parameter s  is obtained by Eq. (4.8): 
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( ) ( ) ( )

2 2
11 55

2
11 55 22 55

c cs
c c c c

β + α
= −

αβ − + −
 (6.8) 

 
 c) The partial surface tractions (5.4) are of the form 
 

 

( ) ( )( )( )
( )( ) ( )( )( )( )

( )
1 1 11 12 55 1

( )
2 11 12 1 11 55 1

( )
3 3 55

1

ir ct

ir ct

ir ct

c ic c i e

c c s i c s c s i s e

c e

⋅ −

⋅ −

⋅ −

= γ β − α + β − γ α

= + β − γ α + γ β − − α

= γ

n x

n x

n x

t n

t n

t w

ν

ν   (6.9) 

 
 
 
 Substituting the surface tractions (6.9) into the dispersion equation (5.5) yields 
 
 
 COROLLARY. At the conditions of Propositions 6.1, 6.2  
 a) The dispersion equation (5.5) takes the form 
 
 1 2 30, 0C× ≡ =t t  (6.10) 
 
 b) The nontrivial coefficients 1 2,C C  defined up to arbitrary scalar multiplier by 
Eq. (5.2), are of the form 
 

 
( )( )

( )
11 12 1 11

1 2
1 11 12

, 1
c c s i c s

C C
c ic

+ β − γ α
= − =

γ β − α
 (6.11) 

 
 
 Thus, Propositions 6.1 – 6.3 completely characterize the surface wave 
propagating on a basal plane of the transversely isotropic half space and corresponding to 
the representation (3.8). 
 The question, whether there exists a surface wave admitting the representation 
(3.9), remains open.  
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